Выбрать главу

What is the analogy of this to the conservation of energy? The most remarkable aspect that must be abstracted from this picture is that there are no blocks. Take away the first terms in (4.1) and (4.2) and we find ourselves calculating more or less abstract things. The analogy has the following points: First, when we are calculating the energy, sometimes some of it leaves the system and goes away, or sometimes some comes in. In order to verify the conservation of energy, we must be careful that we have not put any in or taken any out. Second, the energy has a large number of different forms, and there is a formula for each one. These are gravitational energy, kinetic energy, heat energy, elastic energy, electrical energy, chemical energy, radiant energy, nuclear energy, mass energy. If we total up the formulas for each of these contributions, it will not change except for energy going in and out.

It is important to realize that in physics today, we have no knowledge of what energy is. We do not have a picture that energy comes in little blobs of a definite amount. It is not that way. However, there are formulas for calculating some numerical quantity, and when we add it all together it gives “28”—always the same number. It is an abstract thing in that it does not tell us the mechanism or the reasons for the various formulas.

Gravitational potential energy

Conservation of energy can be understood only if we have the formula for all of its forms. I wish to discuss the formula for gravitational energy near the surface of the earth, and I wish to derive this formula in a way which has nothing to do with history but is simply a line of reasoning invented for this particular lecture to give you an illustration of the remarkable fact that a great deal about nature can be extracted from a few facts and close reasoning. It is an illustration of the kind of work theoretical physicists become involved in. It is patterned after a most excellent argument by Mr. Carnot on the efficiency of steam engines.[4]

Consider weight-lifting machines — machines which have the property that they lift one weight by lowering another. Let us also make a hypothesis: that there is no such thing as perpetual motion with these weight-lifting machines. (In fact, that there is no perpetual motion at all is a general statement of the law of conservation of energy.) We must be careful to define perpetual motion. First, let us do it for weight-lifting machines. If, when we have lifted and lowered a lot of weights and restored the machine to the original condition, we find that the net result is to have lifted a weight, then we have a perpetual motion machine because we can use that lifted weight to run something else. That is, provided the machine which lifted the weight is brought back to its exact original condition, and furthermore that it is completely self-contained—that it has not received the energy to lift that weight from some external source — like Bruce’s blocks.

A very simple weight-lifting machine is shown in Fig. 4–1. This machine lifts weights three units “strong.” We place three units on one balance pan, and one unit on the other. However, in order to get it actually to work, we must lift a little weight off the left pan. On the other hand, we could lift a one-unit weight by lowering the three-unit weight, if we cheat a little by lifting a little weight off the other pan. Of course, we realize that with any actual lifting machine, we must add a little extra to get it to run. This we disregard, temporarily. Ideal machines, although they do not exist, do not require anything extra. A machine that we actually use can be, in a sense, almost reversible: that is, if it will lift the weight of three by lowering a weight of one, then it will also lift nearly the weight of one the same amount by lowering the weight of three.

Figure 4–1 Simple weight-lifting machine.

We imagine that there are two classes of machines, those that are not reversible, which includes all real machines, and those that are reversible, which of course are actually not attainable no matter how careful we may be in our design of bearings, levers, etc. We suppose, however, that there is such a thing — a reversible machine — which lowers one unit of weight (a pound or any other unit) by one unit of distance, and at the same time lifts a three-unit weight. Call this reversible machine Machine A. Suppose this particular reversible machine lifts the three-unit weight a distance X. Then suppose we have another machine, Machine B, which is not necessarily reversible, which also lowers a unit weight a unit distance, but which lifts three units a distance Y. We can now prove that Y is not higher than X; that is, it is impossible to build a machine that will lift a weight any higher than it will be lifted by a reversible machine. Let us see why. Let us suppose that Y was higher than X. We take a one-unit weight and lower it one unit height with Machine B, and that lifts the three-unit weight up a distance Y. Then we could lower the weight from Y to X, obtaining free power, and use the reversible Machine A, running backwards, to lower the three-unit weight a distance X and lift the one-unit weight by one unit height. This will put the one-unit weight back where it was before, and leave both machines ready to be used again! We would therefore have perpetual motion if Y were higher than X, which we assumed was impossible. With those assumptions, we thus deduce that Y is not higher than X, so that of all machines that can be designed, the reversible machine is the best.

We can also see that all reversible machines must lift to exactly the same height. Suppose that B was really reversible also. The argument that Y is not higher than X is, of course, just as good as it was before, but we can also make our argument the other way around, using the machines in the opposite order, and prove that X is not higher than Y. This, then, is a very remarkable observation because it permits us to analyze the height to which different machines are going to lift something without looking at the interior mechanism. We know at once that if somebody makes an enormously elaborate series of levers that lift three units a certain distance by lowering one unit by one unit distance, and we compare it with a simple lever which does the same thing and is fundamentally reversible, his machine will lift it no higher, but perhaps less high. If his machine is reversible, we also know exactly how high it will lift. To summarize: every reversible machine, no matter how it operates, which drops one pound one foot and lifts a three-pound weight always lifts it the same distance, X. This is clearly a universal law of great utility. The next question is, of course, what is X?

Suppose we have a reversible machine which is going to lift this distance X, three for one. We set up three balls in a rack which does not move, as shown in Fig. 4–2. One ball is held on a stage at a distance one foot above the ground. The machine can lift three balls, lowering one by a distance 1. Now, we have arranged that the platform which holds three balls has a floor and two shelves, exactly spaced at distance X, and further, that the rack which holds the balls is spaced at distance X, (a). First we roll the balls horizontally from the rack to the shelves, (b), and we suppose that this takes no energy because we do not change the height. The reversible machine then operates: it lowers the single ball to the floor, and it lifts the rack a distance X, (c). Now we have ingeniously arranged the rack so that these balls are again even with the platforms. Thus we unload the balls onto the rack, (d); having unloaded the balls, we can restore the machine to its original condition. Now we have three balls on the upper three shelves and one at the bottom. But the strange thing is that, in a certain way of speaking, we have not lifted two of them at all because, after all, there were balls on shelves 2 and 3 before. The resulting effect has been to lift one ball a distance 3X. Now, if 3X exceeds one foot, then we can lower the ball to return the machine to the initial condition, (f), and we can run the apparatus again. Therefore 3X cannot exceed one foot, for if 3X exceeds one foot we can make perpetual motion. Likewise, we can prove that one foot cannot exceed 3X, by making the whole machine run the opposite way, since it is a reversible machine. Therefore 3X is neither greater nor less than a foot, and we discover then, by argument alone, the law that X = ⅓ foot. The generalization is clear: one pound falls a certain distance in operating a reversible machine; then the machine can lift p pounds this distance divided by p. Another way of putting the result is that three pounds times the height lifted, which in our problem was X, is equal to one pound times the distance lowered, which is one foot in this case. If we take all the weights and multiply them by the heights at which they are now, above the floor, let the machine operate, and then multiply all the weights by all the heights again, there will be no change. (We have to generalize the example where we moved only one weight to the case where when we lower one, we lift several different ones — but that is easy.)

вернуться

4

Our point here is not so much the result, (4.3), which in fact you may already know, as the possibility of arriving at it by theoretical reasoning.