Выбрать главу

Now we go on to another process. In Fig. 1–6 we see, from an atomic point of view, a solid dissolving in water. If we put a crystal of salt in the water, what will happen? Salt is a solid, a crystal, an organized arrangement of “salt atoms.” Figure 1–7 is an illustration of the three-dimensional structure of common salt, sodium chloride. Strictly speaking, the crystal is not made of atoms, but of what we call ions. An ion is an atom which either has a few extra electrons or has lost a few electrons. In a salt crystal we find chlorine ions (chlorine atoms with an extra electron) and sodium ions (sodium atoms with one electron missing). The ions all stick together by electrical attraction in the solid salt, but when we put them in the water we find, because of the attractions of the negative oxygen and positive hydrogen for the ions, that some of the ions jiggle loose. In Fig. 1–6 we see a chlorine ion getting loose, and other atoms floating in the water in the form of ions. This picture was made with some care. Notice, for example, that the hydrogen ends of the water molecules are more likely to be near the chlorine ion, while near the sodium ion we are more likely to find the oxygen end, because the sodium is positive and the oxygen end of the water is negative, and they attract electrically. Can we tell from this picture whether the salt is dissolving in water or crystallizing out of water? Of course we cannot tell, because while some of the atoms are leaving the crystal other atoms are rejoining it. The process is a dynamic one, just as in the case of evaporation, and it depends on whether there is more or less salt in the water than the amount needed for equilibrium. By equilibrium we mean that situation in which the rate at which atoms are leaving just matches the rate at which they are coming back. If there is almost no salt in the water, more atoms leave than return, and the salt dissolves. If, on the other hand, there are too many “salt atoms,” more return than leave, and the salt is crystallizing.

Figure 1–6
Figure 1–7

In passing, we mention that the concept of a molecule of a substance is only approximate and exists only for a certain class of substances. It is clear in the case of water that the three atoms are actually stuck together. It is not so clear in the case of sodium chloride in the solid. There is just an arrangement of sodium and chlorine ions in a cubic pattern. There is no natural way to group them as “molecules of salt.”

Returning to our discussion of solution and precipitation, if we increase the temperature of the salt solution, then the rate at which atoms are taken away is increased, and so is the rate at which atoms are brought back. It turns out to be very difficult, in general, to predict which way it is going to go, whether more or less of the solid will dissolve. Most substances dissolve more, but some substances dissolve less, as the temperature increases.

Chemical reactions

In all of the processes which have been described so far, the atoms and the ions have not changed partners, but of course there are circumstances in which the atoms do change combinations, forming new molecules. This is illustrated in Fig. 1–8. A process in which the rearrangement of the atomic partners occurs is what we call a chemical reaction. The other processes so far described are called physical processes, but there is no sharp distinction between the two. (Nature does not care what we call it, she just keeps on doing it.) This figure is supposed to represent carbon burning in oxygen. In the case of oxygen, two oxygen atoms stick together very strongly. (Why do not three or even four stick together? That is one of the very peculiar characteristics of such atomic processes. Atoms are very speciaclass="underline" they like certain particular partners, certain particular directions, and so on. It is the job of physics to analyze why each one wants what it wants. At any rate, two oxygen atoms form, saturated and happy, a molecule.)

Figure 1–8

The carbon atoms are supposed to be in a solid crystal (which could be graphite or diamond[1]). Now, for example, one of the oxygen molecules can come over to the carbon, and each atom can pick up a carbon atom and go flying off in a new combination—“carbon-oxygen”—which is a molecule of the gas called carbon monoxide. It is given the chemical name CO. It is very simple: the letters “CO” are practically a picture of that molecule. But carbon attracts oxygen much more than oxygen attracts oxygen or carbon attracts carbon. Therefore in this process the oxygen may arrive with only a little energy, but the oxygen and carbon will snap together with a tremendous vengeance and commotion, and everything near them will pick up the energy. A large amount of motion energy, kinetic energy, is thus generated. This of course is burning; we are getting heat from the combination of oxygen and carbon. The heat is ordinarily in the form of the molecular motion of the hot gas, but in certain circumstances it can be so enormous that it generates light. That is how one gets flames.

In addition, the carbon monoxide is not quite satisfied. It is possible for it to attach another oxygen, so that we might have a much more complicated reaction in which the oxygen is combining with the carbon, while at the same time there happens to be a collision with a carbon monoxide molecule. One oxygen atom could attach itself to the CO and ultimately form a molecule, composed of one carbon and two oxygens, which is designated CO2 and called carbon dioxide. If we burn the carbon with very little oxygen in a very rapid reaction (for example, in an automobile engine, where the explosion is so fast that there is not time for it to make carbon dioxide) a considerable amount of carbon monoxide is formed. In many such rearrangements, a very large amount of energy is released, forming explosions, flames, etc., depending on the reactions. Chemists have studied these arrangements of the atoms, and found that every substance is some type of arrangement of atoms.

To illustrate this idea, let us consider another example. If we go into a field of small violets, we know what “that smell” is. It is some kind of molecule, or arrangement of atoms, that has worked its way into our noses. First of all, how did it work its way in? That is rather easy. If the smell is some kind of molecule in the air, jiggling around and being knocked every which way, it might have accidentally worked its way into the nose. Certainly it has no particular desire to get into our nose. It is merely one helpless part of a jostling crowd of molecules, and in its aimless wanderings this particular chunk of matter happens to find itself in the nose.

Now chemists can take special molecules like the odor of violets, and analyze them and tell us the exact arrangement of the atoms in space. We know that the carbon dioxide molecule is straight and symmetricaclass="underline" O — C—O. (That can be determined easily, too, by physical methods.) However, even for the vastly more complicated arrangements of atoms that there are in chemistry, one can, by a long, remarkable process of detective work, find the arrangements of the atoms. Figure 1–9 is a picture of the air in the neighborhood of a violet; again we find nitrogen and oxygen in the air, and water vapor. (Why is there water vapor? Because the violet is wet. All plants transpire.) However, we also see a “monster” composed of carbon atoms, hydrogen atoms, and oxygen atoms, which have picked a certain particular pattern in which to be arranged. It is a much more complicated arrangement than that of carbon dioxide; in fact, it is an enormously complicated arrangement. Unfortunately, we cannot picture all that is really known about it chemically, because the precise arrangement of all the atoms is actually known in three dimensions, while our picture is in only two dimensions. The six carbons which form a ring do not form a flat ring, but a kind of “puckered” ring. All of the angles and distances are known. So a chemical formula is merely a picture of such a molecule. When the chemist writes such a thing on the blackboard, he is trying to “draw,” roughly speaking, in two dimensions. For example, we see a “ring” of six carbons, and a “chain” of carbons hanging on the end, with an oxygen second from the end, three hydrogens tied to that carbon, two carbons and three hydrogens sticking up here, etc.

вернуться

1

One can burn a diamond in air.