Выбрать главу

Таблица 4

Характер и локализация процессов, осуществляемых живым веществом

Род геологической деятельности Характер процесса \ Где протекает процесс Внутри организма Вне организма
I Химический (биохимический) Переваривание пищи, построение тела организма Выделение во внешнюю среду продуктов метаболизма и экскретов; внеклеточное пищеварение
II Механический Пропускание через желудочный тракт грунтоедов и илоедов неорганических компонентов пищи, не подверженных перевариванию Перемещение неживого вещества организмами в ходе жизнедеятельности

Каковы же функции живого вещества в биосфере? По Вернадскому, таких функций девять: а) газовая; б) кислородная; в) окислительная; г) кальциевая; д) восстановительная; е) концентрационная; ж) функция разрушения органических соединений; з) функция восстановительного разложения; и) функция метаболизма и дыхания организмов. Эти выделенные Владимиром Ивановичем функции живого вещества с учетом накопленного за последние десятилетия материала можно несколько перегруппировать (табл. 5).

Таблица 5

Основные функции живого вещества в биосфере

№ п/п Функции Краткая характеристика происходящих процессов
1 Энергетическая Поглощение солнечной энергии при фотосинтезе, а химической энергии — путем разложения энергонасыщенных веществ; передача энергии по пищевой цепи разнородного живого вещества
2 Концентрационная Избирательное накопление в ходе жизнедеятельности определенных видов вещества: а) используемых для построения тела организма; б) удаляемых из него при метаболизме
3 Деструктивная 1) Минерализация необиогенного органического вещества; 2) разложение неживого неорганического вещества; 3) вовлечение образовавшихся веществ в биотический круговорот
4 Средообразующая Преобразование физико-химических параметров среды (главным образом за счет необиогенного вещества)
5 Транспортная Перенос вещества против силы тяжести и в горизонтальном направлении

Энергетическая функция проявляется в ассимиляции живым веществом энергии и передаче ее по трофической цепи. Установлено, что на собственные нужды организмы расходуют не более 10—12% ассимилированной ими энергии; остальная ее часть перераспределяется внутри экосистемы. Частично энергия рассеивается, а частично накапливается в биогенном веществе. После перехода в ископаемое состояние энергия «консервируется» в земной коре и служит энергетической базой для экзогенных геологических процессов.

Живое вещество является довольно совершенным приемником солнечной энергии. Вернадский подсчитал, что если поверхность Земли составляет едва 0,0001% поверхности Солнца, то суммарная поверхность ассимиляционного аппарата растений — от 0,86 до 4,2%. Измерения, произведенные красноярскими биофизиками в конце 70‑х годов, подтвердили порядок величин, полученных В. И. Вернадским.

Еще совсем недавно солнечная энергия считалась единственным энергетическим источником всех биотических процессов. При этом считалось, что и хемоавтотрофы используют энергию, когда-то ранее ассимилированную фотоавтотрофами и в дальнейшем законсервированную в метабиосфере. Сейчас, однако, показано, что живое вещество с успехом может использовать и «первичную» эндогенную энергию: абиссальные рифтовые сгущения жизни, описанные в предыдущей главе, потребляют эндогенный сероводород и энергетически независимы от солнечного излучения. Масштабы этого новооткрытого приемника энергии пока трудно оценить, но факт остается фактом: живое вещество ассимилирует энергию из обоих источников, поступающих в биосферу, — космического и эндогенного. А в итоге, как четко сформулировал французский ботаник Г. Гегамян, «энергетический баланс планеты как космической системы зависит от живого вещества».