Выбрать главу

По существу, все высшие животные представляют собой не организмы, а надорганизмы, поскольку включают в себя целый комплекс микроорганизмов, способствующих пищеварению. Специально проведенные эксперименты показали, что стерильные особи (свободные от микроорганизмов) резко отличаются от обычных и должны быть охарактеризованы как неполноценные.

В масштабе биосферы можно говорить о чудесном симбиозе всего живого вещества Земли, идеально сбалансированном со средой обитания.

Вы помните бабочку из рассказа Рея Бредбери «И грянул гром» — бабочку, изменившую ход истории? Американский фантаст ничего не преувеличил. Биосфера — тонко сбалансированная система. И «маленькое изящное создание, способное нарушить равновесие», рожденное фантазией Бредбери, и «толстое тело коровы» из стихов Заболоцкого находят свое место «на карте живущих всего мира». Живи, живое…

Глава третья. Сгущения и пленки жизни

Все живое представляет неразрывное целое, закономерно связанное не только между собою, но и с окружающей косной средой биосферы.

В. И. Вернадский. 1926

Из жизненного опыта нам хорошо известно, что жизнь размещена в биосфере очень неравномерно, и площади, густо населенные живыми организмами, чередуются с пустынными пространствами. Такая неравномерность распределения живого вещества наблюдается в биосфере повсеместно — на суше и на море, на земле и под землей.

В. И. Вернадский выделял две формы концентраций жизни: жизненные пленки, прослеживаемые на огромных площадях (например, планктонная пленка жизни, покрывающая всю верхнюю часть водной толщи океана), и сгущения жизни, имеющие более локальное распространение (например, сгущения стоячих водоемов). Мощность концентраций жизни обычно измеряется единицами или десятками, значительно реже — одной-двумя сотнями метров, т. е. по отношению к биосфере в целом — ничтожными величинами. Остальная часть биосферы представляет собой зону разрежения живого вещества.

Пленки и сгущения жизни являются областями наибольшей биогенной миграции атомов и трансформации энергии в биосфере. Развивая идеи Вернадского, А. И. Перельман отметил, что вся биосфера по вертикали отчетливо разделяется на две зоны: верхнюю, в которой происходит фотосинтез, и нижнюю, где фотосинтетические реакции невозможны. Он предложил верхнюю зону называть «фитосферой», а нижнюю — «редусферой». Н. Б. Вассоевич, критикуя эти названия, предлагал соответственно для зон название «фотобиосфера» и «мелабиосфера» (от древнегреческого корня «мела(н)», темный). Однако термин «мелабиосфера» также не является вполне удачным, поскольку он лишь одной буквой отличается от других терминов Н. Б. Вассоевича — «метабиосфера» и «мегабиосфера». Представляется поэтому, что нижнюю зону биосферы лучше называть не мелабиосферой, как предлагает Н. Б. Вассоевич, а меланобиосферой.

Граница между фотобиосферой и меланобиосферой на суше почти совпадает с дневной поверхностью: свет проникает в глубь почвы лишь на несколько миллиметров. В водной среде положение границы определяется прозрачностью воды. Толщина зоны фотосинтеза изменяется от нескольких сантиметров в быстротекущих реках, несущих значительное количество ила, до первой сотни метров (максимально до 180 м) на удаленных от суши участках океана. В соответствии с этим мощность фотобиосферы колеблется от нескольких миллиметров до первой сотни метров (на суше — вверх от дневной поверхности: вековые леса, в океане — вниз от поверхности моря: зона фотосинтеза). Мощность меланобиосферы на 1—2 порядка больше: в океанах — это вся водная толща ниже зоны фотобиосферы и заселенный слой донных осадков, на континентах — слой биосферы от дневной поверхности до нижней границы распространения активной бактериальной жизни.

Коренное отличие фотобиосферы от меланобиосферы состоит в структуре их живого вещества: в первом случае оно представлено фотоавтотрофами и гетеротрофами, во втором — фотоавтотрофы отсутствуют (однако в некоторых случаях их заменяют хемоавтотрофы). Впрочем, и среди гетеротрофов в меланобиосфере живут лишь виды, приспособившиеся к отсутствию света. Что касается человека, то он, расселяясь в пещерах, начал осваивать меланобиосферу много тысячелетий назад. Затем, переселившись в более уютную фотобиосферу, он начал углубляться в меланобиосферу своими рудниками. А сейчас многие из нас, пользуясь городским метрополитеном, ежедневно совершают «суточные миграции» в меланобиосферу.

Фотобиосферу и меланобиосферу можно разбить по вертикали и на более дробные зоны. Так, советский исследователь Юрий Петрович Бяллович ввел понятие биогеоценотического горизонта, или биогеогоризонта, определив его следующим образом: «Биогеоценотический горизонт есть вертикально обособленная и по вертикали далее нерасчленимая структурная часть биогеоценоза. Сверху донизу биогеоценотический горизонт однороден по составу биогеоценотических компонентов, по взаимосвязям их, по происходящим в нем превращениям вещества и энергии, и в этих же отношениях он отличается от соседних биогеоценотических горизонтов, служащих ему кровлей и постелью». Первопричиной деления биосферы на биогеогоризонты, по Бялловичу, является радиальное направление гравитации, солнечной радиации и земного излучения. В экосистемах всех рангов можно проследить не только эти элементарные, далее нерасчленимые, биогеогоризонты, но и слои более высоких рангов, которые целесообразно называть экогоризонтами[41]. Экогоризонтами высшего — глобального — ранга и являются фотобиосфера и меланобиосфера. Выделяемые В. И. Вернадским пленки жизни можно рассматривать как частный случай экогоризонтов.

Итак, по горизонтали биосфера делится на экосистемы, по вертикали — на экогоризонты. Действие закона всемирного тяготения приводит к тому, что взаимозависимость между двумя соседними экогоризонтами обычно больше, чем между соседними экосистемами.

Все экосистемы биосферы Земли по ландшафтному принципу можно разделить на три основные группы: а) морские экосистемы; б) экосистемы суши; в) экосистемы континентальных водоемов. Только морские экосистемы объединены в единую грандиозную экосистему — Мировой океан. Другие типы экосистем имеют дисперсное распространение: экосистемы наземных водоемов окружены сушей, а суша, в свою очередь, океаном. В современную эпоху они занимают следующие площади: Мировой океан — 361,2 млн. км², суша — 145,7 млн. км², континентальные водоемы — лишь 3,2 млн. км². Рассмотрим, как распределено живое вещество в этих основных типах экосистем биосферы и какие следы оставляют они в геологических отложениях.

«Биогенные соли в глубине и наличие света у поверхности» — так в афористической форме выразил советский океанолог Ю. Ю. Марти основную проблему морских экосистем. Мировой океан включает в себя водную толщу (океанологи ее называют пелагиалью) и дно (бенталь). Пелагиаль в пределах фотобиосферы в океанологии называют эвфотической зоной; нижняя часть пелагиали именуется афотической зоной. По существу, это три самостоятельных экогоризонта океана (сверху вниз: эвфотическая зона, афотическая зона и бенталь), каждый из которых характеризуется своим специфическим живым веществом и условиями среды. В некоторых полузамкнутых бассейнах с затрудненной циркуляцией вод (типа Черного моря) обнаруживается другой своеобразный слабо заселенный экогоризонт — зона сероводородного заражения, где прозябают только несколько видов анаэробных бактерий.

В. И. Вернадский выделил в океане две жизненные пленки (планктонную и донную). Обе они приурочены к границам раздела фаз: планктонная — газообразной и жидкой, донная — жидкой и твердой (рис. 2).

вернуться

41

См.: Лапо А. В. Биосфера Земли, ее границы и экогоризонты. — В кн.: Седикахиты на разных стадиях литогенеза. М., Наука, 1982. с. 43—49.