Пока трудно судить, насколько значительной в общем балансе вещества и энергии в океане может быть роль абиссальных рифтовых сгущений жизни (до выяснения обстоятельств это название сохраняем). Не исключено, что в самих рифтовых сообществах используется лишь небольшая часть первичной продукции, создаваемой хемоавтотрофными бактериями. Как предполагает французский ученый Мишель Ру, остальная ее часть рассеивается на значительной площади акватории Мирового океана. Наряду с планктонной пленкой жизни абиссальные рифтовые сообщества могут оказаться еще одним «огородом» океана — природа, как известно, любит дублировать сконструированные ею системы жизнеобеспечения.
Когда появились в биосфере абиссальные рифтовые сгущения жизни? По крайней мере 570 млн. лет назад — именно такой возраст имеет древнейшая достоверная находка их ископаемых остатков, сделанная на территории Ирландии. Впрочем, в отложениях венда (670—590 млн. лет) академиком Борисом Сергеевичем Соколовым уже давно были описаны остатки трубчатых организмов Sabelliditida, которые, как полагают теперь французские ученые супруги Термье, могут являться предками рифтий. Если это действительно так, рифтовые сгущения жизни — одни из древнейших экосистем, существующих на нашей планете. Не нуждаясь в солнечном свете, они могли возникнуть даже до появления на Земле первых фотоавтотрофов. Так это или нет, покажут дальнейшие исследования — геологических свидетельств пока явно недостаточно.
Открытие абиссальных рифтовых сгущений жизни справедливо расценивается как одно из крупнейших биологических открытий, сделанных в 70‑е годы. Их исследования интенсивно продолжаются. И можно согласиться с американским ученым Дж. Ф. Грэсслом, который сказал, что после открытия абиссальных рифтовых сгущений «изменилось наше представление о жизни в глубинах морей, и еще много сюрпризов ждет нас в ближайшем будущем». Можно сказать и больше — коренным образом изменилось и наше прежнее представление о биосфере в целом: теперь уже о ней невозможно говорить как о системе, ход жизни в которой поддерживается исключительно первичной продукцией фотоавтотрофов.
Таковы современные данные о сгущениях жизни в океане. Экосистемы суши значительно отличаются от морских, хотя имеются и некоторые черты сходства. Как и в океане, на суше имеются две пленки жизни, причем верхняя также расположена в фотобиосфере, а нижняя — в меланобиосфере. Но на этом сходство, по существу, и кончается.
Верхняя пленка жизни на суше — наземная; она идет вверх от поверхности почвы до верхней границы биосферы. Это — привычные нам ландшафты, которые описывать нет необходимости.
Ниже располагается весьма специфическая почвенная пленка жизни, представляющая собой густо заселенную сложную трехфазную систему. Как показал М. С. Гиляров[44], трехфазность, пористость и агрегатный характер почвы дают возможность существования самых разнообразных экологических групп организмов. Так, для микроорганизмов даже отдельная частица почвы обеспечивает одновременную активность как аэробных (на поверхности частицы), так и анаэробных (внутри нее) организмов. Простейшие, коловратки, мелкие нематоды живут в водной среде: в пленке воды, обволакивающей твердые частицы почвы. А для несколько более крупных обитателей, например мелких клещей, почва представляет как бы разветвленную систему пещер. И лишь для крупных обитателей (дождевых червей, личинок насекомых и т. д.) средой обитания является почва в целом.
Концентрация жизни в почвенной пленке выше, чем в наземной. Так, в 1 см³ лесной почвы насчитывается в среднем 10 млн. бактерий, 200 тыс. микроскопических водорослей и 20 тыс. простейших, а длина содержащихся в нем гифов грибов достигает фантастической величины — 2 км! Деятельности живого вещества в почве В. И. Вернадский посвятил специальную работу, рукопись которой недавно была обнаружена в Киеве[45].
На суше обе пленки жизни имеют непосредственный контакт, а не разделяются по вертикали несколькими километрами слабо заселенного жизнью пространства, как в океане. Здесь нет проблемы, ограничивающей продуктивность океана («биогенные соли на глубине»), и потребные им элементы фотоавтотрофные организмы добывают из почвы. Туда же после отмирания попадают их остатки — необиогенное органическое вещество. Такое тесное взаимодействие пленок жизни приводит к тому, что их часто объединяют в общее понятие биогеоценотического покрова.
Ниже под тонким слоем почвы (ее мощность составляет несколько дециметров, реже 1—1,5 м) располагается область подземного разрежения жизни, которую болгарский ученый, профессор Любомир Цветков недавно предложил называть стигобиосферой (от названия мифической реки Стикс, согласно верованиям древних греков, протекающей через подземное царство мертвых Аид). Стигобиосфера — мир, слабо затронутый научным исследованием. За редким исключением, каковое представляют пещеры, здесь везде — от нижней границы почвы до нижнего предела биосферы — возможна главным образом бактериальная, микроскопическая, жизнь. Сферой своего обитания подземные узники выбирают влагу — они живут в подземных водах и на их контакте с горными породами. На материале изучения ряда регионов Советского Союза крупный ленинградский гидрогеолог и геохимик Марк Савельевич Гуревич (1910—1975) установил в 1967 г. наличие сопряженной микробиологической и биогидрогеохимической зональности подземных вод. В дальнейшем эти работы были продолжены микробиологом Людмилой Евстафьевной Крамаренко (табл. 3). По существу, зоны, выделяемые М. С. Гуревичем и Л. Е. Крамаренко, являются определенными экогоризонтами подпочвенной части меланобиосферы в ее континентальной части.
Таблица 3
Схема гидробиохимической зональности земной коры, по Л. Е. Крамаренко (1975, 1983)
Зоны | Eh, мВ | Микроорганизмы (примеры) | К[46] | Продукты жизнедеятельности бактерий (биогенное вещество) |
---|---|---|---|---|
Аэробная (I) | +800÷+100 | Тионовые, нитрифицирующие, метаноокисляющие, водородокисляющие бактерии | До ∞ | SO42−, NO3−, NO2−, CO2, окисные формы металлов |
Смешанная (II) | +100÷−200 | Тионовые, нитрифицирующие, водородокисляющие, денитрифицирующие, сульфатвосстанавливающие, метанпродуцирующие, водородпродуцирующие бактерии | Около 1 | SO42−, NO3−, NO2−, CO2, окисные формы металлов H2S, N2, H2, CH4, восстановленные формы металлов |
Анаэробная (III) | −200÷−400 и ниже | Сульфатвосстанавливающие, денитрифицирующие, метанпродуцирующие, водородпродуцирующие бактерии | До 0 | H2S, N2, H2, CH4, восстановленные формы металлов |
Отсутствия бактерий (IV) | Не обнаруживаются | CH4, N2, H2S, восстановленные формы металлов |
С учетом этого обстоятельства на суше можно выделить 5 следующих экогоризонтов биосферы (рис. 4, сверху вниз): 1) наземную пленку жизни; 2) почвенную пленку жизни; 3) аэробный подземный экогоризонт, соответствующий аэробной гидробиохимической зоне; 4) аэробно-анаэробный подземный экогоризонт (смешанная гидробиохимическая зона); 5) анаэробный подземный экогоризонт (анаэробная гидробиохимическая зона). Последние три зоны соответствуют стигобиосфере по Л. Цветкову.
Рис. 4. Экогоризонты, концентрации и разрежения жизни на суше: I — наземная пленка жизни; II — почвенная пленка жизни; III — сгущения жизни; 1 — береговое; 2 — пойменное; 3 — влажных дождевых лесов тропиков и, отчасти субтропиков; 4 — сгущения стоячих водоемов; А—В — разрежения жизни: А — аэробный подземный экогоризонт; Б — аэробно-анаэробный подземный экогоризонт; В — анаэробный подземный экогоризонт
44
45
См.: