Выбрать главу

А как же иридий? Ученые университета штата Мэриленд (США) недавно показали, что иридий может иметь и земное происхождение. Исследуя продукты выброса вулкана Килауэа, расположенного на одном из островов Гавайского архипелага, они обнаружили необычайно высокую концентрацию в них иридия. При этом было доказано, что иридий накапливался не в излившихся при извержении лавах, а поступал с вулканическим пеплом и газами в атмосферу, что и обеспечивало широкое его площадное рассеивание. Правда, масштабы поступления иридия при извержении Килауэа не были особенно значительными. Однако нельзя забывать, что в конце мезозоя происходили грандиозные излияния базальтов. Не исключено, что именно они привели к резкому накоплению иридия сначала в атмосфере, а затем — и к его концентрации в четко ограниченном прослое. Кстати, прослой с иридием присутствует не везде: например, в детально изученных рубежных отложениях мела и палеогена в Крыму его так и не нашли, как ни искали.

Таким образом, весь материал, накопленный геологией, показывает непрерывность развития органического мира Земли в течение всей геологической истории и правильность вывода В. И. Вернадского об отсутствии в земной коре азойных (сформировавшихся в отсутствие жизни) отложений. Внутреннее разнообразие биосферы обеспечило ее устойчивость даже по отношению к самым значительным катастрофическим потрясениям. Она — эта устойчивость — определяется исключительным разнообразием населяющих биосферу живых организмов и почти безгранично большим их количеством, взаимозаменяемостью составляющих ее экосистем, дублированием отдельных звеньев биогеохимических циклов, жизненной устойчивостью и активностью особей и т. д.

Характерной особенностью биосферы является мозаичность ее строения. Жизнь, будучи организована в планетарном масштабе, функционирует в пределах отдельных «квантов» биосферы. В 1935 г. английским ученым Артуром Дж. Тэнсли (1871—1955) они были названы экосистемами. Согласно современному определению Д. В. Панфилова, «экосистемы — это комплексы взаимосвязанных популяций разных видов живых существ и изменяемой ими абиотической среды, обладающие способностью к саморегуляции и самовозобновлению всех главных компонентов их биоты». Размеры экосистемы очень различны: «от кочки до оболочки», по шутливому выражению географа и писателя Юрия Константиновича Ефремова. Их протяженность на суше, например, варьирует от нескольких метров (песчаные дюны, микродепрессии в степях и полупустынях, небольшие блюдечки озер в тундрах) до нескольких километров (солончаки, однородные участки степей, лесов и т. д.). Экосистемой глобального масштаба является биосфера Земли. Подобно биосфере, экосистемы всех рангов биоцентричны.

В советской научной литературе иногда употребляется также термин «биогеоценоз», предложенный в 1940 г. академиком Владимиром Николаевичем Сукачевым (1880—1967). Согласно его определению, биогеоценоз — это участок биосферы, через который не проходит ни одна существенная биоценотическая, микроклиматическая, гидрологическая, почвенная, геоморфологическая или геохимическая граница. Впоследствии биогеоценоз стали определять как экосистему в пределах фитоценоза, считая, что категории экосистемы и биогеоценоза совпадают на уровне растительного сообщества. По существу же, эти понятия близки и различаются главным образом в деталях. При этом понятие экосистемы является более гибким, и в дальнейшем изложении мы будем пользоваться главным образом этим термином.

Несмотря на свою относительную замкнутость, экосистемы тесно связаны между собой. Тому имеется много доказательств. Самое простое: мы круглый год потребляем кислород, а выделяется он растениями только во время вегетационного периода, который лишь в тропическом поясе продолжается круглогодично. В остальное время мы расходуем кислород, поставляемый растениями противоположного полушария. Есть и более печальные свидетельства глобальной интегрированности биосферного круговорота: в теле антарктических пингвинов найден ДДТ (который, конечно, никогда не применялся в Антарктиде), а в молоке европейских женщин радиоактивный стронций появлялся регулярно через четыре месяца после каждого испытания атомного оружия на атоллах Тихого океана.

Основными элементами, участвующими в биосферном круговороте, являются водород, кислород, углерод, азот, кальций, калий, кремний, фосфор, сера, стронций, барий, железо, марганец, цинк, молибден, медь и никель. Круговороты химических элементов, вызванные деятельностью живого вещества, получили название биогеохимических циклов. Их исследованию в настоящее время уделяется большое внимание в связи с проблемами охраны окружающей среды.

Гетерогенность строения биосферы, ее «мозаичность» определяются и наличием в ней регионов с различной биогеохимической специализацией или, как их первоначально называли, биогеохимических провинций. Это понятие было введено в 1936 г. В. И. Вернадским и А. П. Виноградовым в их совместном докладе «Геохимические провинции и заболевания» и в дальнейшем развито последним. По определению Виноградова, под биогеохимическими провинциями понимаются области на поверхности Земли, различающиеся по содержанию (в их почвах, водах и т. п.) химических элементов (или соединений), с которыми связаны определенные биологические реакции со стороны местной флоры и фауны. Впоследствии членом-корреспондентом ВАСХНИЛ Виктором Владиславовичем Ковальским (1899—1984) была составлена карта биогеохимического районирования СССР, первая редакция которой была опубликована в 1954 г., а последняя — в 1982 г.

Глобальный биогеохимический круговорот в биосфере не является замкнутым. Степень воспроизводства отдельных циклов достигает 90—98%. В масштабе геологического времени неполная замкнутость биогеохимических циклов приводит к дифференциации элементов и накоплению их в атмосфере, гидросфере или метабиосфере Земли. Эти несколько процентов вещества, ускользающие из круговорота, и составляют тот «выход в геологию», о котором мы уже упоминали.

Однако «геология» стоит не только на «выходе», но и на «входе» биогеохимического круговорота. Одним из первых обратил на это внимание знаменитый немецкий геолог Иоганнес Вальтер (1860—1937), который писал: «Биосфера образует своеобразную переходную зону между атмосферой, гидросферой и литосферой. Углекислота воздуха в виде твердых ископаемых углей так же могла принимать участие в составе земной коры, как и когда-то растворенная в воде известь…» Развивая это положение на материале современных данных, известный советский геохимик, лауреат Золотой медали им. В. И. Вернадского, член-корреспондент АН СССР Александр Борисович Ронов пришел к выводу о значительной «открытости» биогеохимического круговорота и о необходимости постоянного поступления в него углекислоты из недр. А. Б. Ронов сформулировал следующий «геохимический принцип сохранения жизни»: «Жизнь на Земле и других планетах при прочих равных условиях возможна лишь до тех пор, пока эти планеты активны и происходит обмен энергией и веществом между их недрами и поверхностью».

Непрерывному круговороту в биосфере подвергаются только вещества, в то время как для энергии можно говорить лишь о направленном потоке. Поступающая в биосферу солнечная энергия частично расходуется на синтез органического вещества. Биосфера — это «фабрика макромолекул»: фотоавтотрофные организмы, поглощая солнечную энергию, путем фотосинтеза превращают низкомолекулярные, бедные энергией неорганические вещества в высокомолекулярные, богатые энергией органические соединения и снабжают ими все живое.

Передаваясь с одного трофического уровня на другой, энергия постепенно рассеивается. После окончательного разложения органических остатков энергия частично накапливается в земной коре в виде алюмосиликатов, которые академик Н. В. Белов (1891—1982) назвал «геохимическими аккумуляторами». Говоря о пронизывании внешней оболочки Земли солнечной энергией, Н. В. Белов привел пример с бриллиантом. Когда на бриллиант падает свет, одна часть его отражается от граней драгоценного камня, а другая попадает внутрь и способна вырваться наружу только после многократных отражений от внутренних граней. Такого же рода странствиям (в масштабе геологического времени) подвергается и солнечная энергия, аккумулированная живым веществом.