«Глубина» рекурсии — это количество допускаемых суб-суб-…ветвлений между началом и остановкой процесса. На рисунке 2 показаны случаи, когда вы велите компьютеру выполнить одно и то же правило рисования, но остановиться на разных глубинах рекурсии. При очень глубокой рекурсии образец становится весьма сложным, но тем не менее на рисунке 2 можно легко видеть, что это результат того же самого очень простого правила ветвления. Конечно, именно это происходит у настоящего дерева. Схема ветвления дуба или яблони выглядит сложной, но на деле таковой не является. Базовое правило ветвления очень просто. Но из-за того, что оно применяется рекурсивно во всех отрастающих кончиках всех ветвей дерева — ветви производят суб-ветви, затем каждая суб-ветвь производят суб-суб-ветви и так далее — в результате всё дерево получается большим и густым.
Рис. 2.
Рекурсивное ветвление — это также хорошая метафора для эмбрионального развития растений и животных. Я не хочу сказать, что эмбрион животного напоминает ветвящееся дерево. Нет, конечно. Но рост всех эмбрионов осуществляется делением клеток. Деление любой клетки всегда состоит в разделении её на две дочерние. И гены всегда влияют на результирующие эффекты развития тел посредством локального влияния на клетки и на «двухветочную» схему деления клетки. Гены животного никак не являются эдаким грандиозным чертежом всего тела. Как мы увидим далее, гены более подобны рецепту, чем подобному чертежу — более того, не тому рецепту, который описывает развивающийся эмбрион как целое, но рецепту поведения отдельной клетки или локального кластера делящихся клеток. Я не спорю, что весь эмбрион, а позже и взрослая особь, может обладать крупными размерами и формой. Но это крупное тело появляется как результат большого количества маленьких локальных клеточных эффектов во всём развивающемся теле, и эти локальные эффекты в основном представляют собой такие вот «двухветочные» расколы клеток. Именно влияя на эти локальные события, гены в конечном счёте оказывают влияние на взрослое тело.
Итак, простое правило ветвления рисунка дерева будет похоже на обещанный аналог эмбрионального развития. Ну раз это так, то мы оформляем его в маленькую компьютерную процедуру, называем её РАЗВИТИЕ и готовим к включению в бóльшую программу с названием ЭВОЛЮЦИЯ. И в качестве первого шага к написанию этой большей программы, обратим наше внимание на гены. Как будет мы моделировать «гены» в нашей компьютерной модели? В реальном живом существе гены делают две вещи: влияют на развитие и переходят в следующие поколения. У реальных животных и растений имеются десятки тысяч генов, но мы скромно ограничим нашу компьютерную модель девятью. Каждый из этих девяти генов просто представлен неким числом в компьютере, которое мы будем называть его значением. Значение конкретного гена может быть, скажем, 4 или -7.[8]
Как наши гены будут влиять на развитие? Они могут делать много чего. Основная идея состоит в том, что они должны оказывать какое-то небольшое количественное влияние на правило рисования, которое и есть РАЗВИТИЕ. Например, один ген мог бы влиять на угол ветвления, другой мог бы влиять на длину некоторых конкретных ветвей. Ещё очевидная задача для гена — влиять на глубину рекурсии (количество последовательных ветвлений). Я поручил этот эффект гену 9. Таким образом, вы можете расценивать рисунок 2 как картину родственных организмов, идентичных друг другу во всём, кроме значения гена 9. Я не буду подробно описывать, что делает каждый из других восьми генов. Вы можете получить общие представления об этом, изучая рисунок 3. В середине рисунка — основное дерево, одно из деревьев рисунка 2. Окружают это центральное дерево восемь других. Все они совпадают с центральным деревом, за исключением того, что какой-то один ген из восьми у них был изменён — «мутировал». Например, дерево справа от центрального показывает, что будет, если ген 5 мутирует, увеличиваясь на +1 относительно его прежнего значения. Если б было достаточно места, я бы с удовольствием напечатал кольцо из 18 мутантов вокруг центрального дерева. Почему именно 18? Потому, что каждый из 9 генов может мутировать как в «восходящем» (на единицу больше его значения), так и «нисходящем» направлении (на единицу меньше его значения). Так что кольца из 18 деревьев было бы достаточно, чтобы отобразить всех возможных одношаговых мутантов, которых вы можете произвести от одного центрального дерева.
Рис. 3.