333
Действительно, равенство подчинено единому (поскольку единое прежде всего равно самому себе), а неравенство усматривается в избытке и недостатке (поскольку неравно то, из чего одно превышает, а другое превышается). Но и избыток и недостаток строятся по типу неопределенной диады, так как первые избыток и недостаток заключаются в двух [предметах] - в превышающем и превышаемом. Итак, высшими началами всего оказываются здесь первая монада и неопределенная диада. Из них, говорят [пифагорейцы], возникает единица в числах и еще двойка: от первой монады - единица, а от монады и неопределенной диады - двойка. Ведь дважды один два, и, когда еще среди чисел не было двух, не было среди них и выражения "дважды", но взято оно из неопределенной диады, и таким образом из нее и из монады произошла числовая двойка. По такому же способу вышли из них и остальные числа, причем единое всегда служит пределом, а неопределенная диада рождает два и выпускает числа до бесконечного множества.
Поэтому, говорят они, в этих началах значение действующей причины имеет монада, а страдающей материи - диада. И как они создали из них основы чисел, так они сконструировали мир и все, что в мире. Например, точка устроена по типу монады, ведь, как монада есть нечто неделимое, так и точка, и, как монада есть некое начало в числах, так и точка есть некое начало в линиях. Поэтому точка имеет смысл монады, а линия рассматривается сообразно идее диады. Ведь и линия, и диада мыслятся как результат перехода. И иначе: длина без ширины, мыслимая между двумя точками, есть линия; поэтому линия будет соответствовать диаде, а плоскость - триаде, поскольку они рассматриваются не только как длина соответственно диаде, но присоединяют и третье измерение - ширину. И если даны три точки, причем две на противоположных концах отрезка, третья же в другом измерении против середины линии, образованной из первых двух точек, то получится плоскость. Пространственная же фигура, т.е. тело, например, пирамидальное, строится сообразно тетраде. С присоединением к трем точкам, расположенным так, как выше сказано, еще какой-нибудь точки сверху получается пирамидальная фигура пространственного тела, поскольку оно имеет уже три измерения - длину, ширину и глубину. Некоторые же говорят, что тело составляется из одной точки. Ведь эта точка в своем течении образует линию, а линия в своем течении образует плоскость, а эта последняя, двинувшись в глубину,
364
порождает трехмерное тело. Однако такая позиция пифагорейцев отличается от позиции их предшественников. Ведь те выводили числа из двух начал монады и неопределенной диады, затем из чисел - точки, линии, плоскостные и пространственные фигуры. А эти из одной точки производят все. Ведь из нее, [по их мнению], возникает линия, из линии - поверхность, а из этой последней - тело.
Итак, вот как под главенством чисел возникают пространственные тела. Из них, наконец, составляются и [чувственные] тела, земля, вода, воздух и огонь и вообще мир, который управляется гармонией, как говорят они, снова обращаясь к числам, в которых заключены пропорции составляющих совершенную гармонию созвучий - кварты, квинты и октавы, из которых первая основана на отношении четырех к трем, вторая - на полуторном и третья - на двойном отношении. Об этом сказано точнее при разборе вопроса о критерии и в рассуждениях о душе [38].
Теперь же, показавши, что италийские физики придают числам великое значение, мы, переходя к дальнейшему, приведем апории, вытекающие из их позиции.
Когда они говорят, что среди исчисляемых предметов, например чувственных и воспринимаемых, нет никакого единого и что нечто зовется единым [только] по причастности к единому, которое является как бы первичным и элементарным, то если [конкретно] указываемое и называемое животное было бы единым, то, [по их мнению], не указываемое [при этом] растение уже не может быть единым. Ведь многое не должно быть единым, но по общению с единым каждый предмет должен мыслиться единым, как, например, животное, бревно, растение. Ведь если указываемое животное есть единое, то не животное, [говорят они], например растение, уже не может быть единым; и если растение есть единое, то то, что не есть растение, например животное, уже не будет единым. Но то, что не есть животное, как, например, растение, все же зовется единым: и [точно так же] - то, что не есть в свою очередь растение, например животное. Следовательно, [заключают они], не каждая исчисляемая вещь едина. А то, по причастности к чему каждая вещь мыслится единой, - оно-то и есть единое и многое: единое - само по себе, а многое - по охвату. Это множество опять-таки нельзя
365
указать среди исчисляемых вещей. Ведь если множество животных есть это множество, то множество растений не будет этим множеством, а если оно есть это множество, то, наоборот, не будет множества животных. Но о множестве говорится и в отношении растений, и в отношении животных, и в отношении достаточного количества других [вещей]. Следовательно, действительное множество не есть то, которое указывается среди исчисляемых вещей, но то, по причастности к чему мыслится [указываемое] множество.
Когда пифагорейские философы говорят так, они, очевидно, говорят нечто подобное тому, как если бы никто из отдельных людей не был человеком, но [только] тот, причастностью к которому каждый отдельный человек мыслится единым и многие люди называются многими. Ведь человек мыслится как разумное смертное живое существо, и поэтому ни Сократ не есть человек, ни Платон и никто другой из видовых [людей]. Именно, если Сократ, поскольку он Сократ, есть человек, то Платон не будет человеком, а также Дион или Феон. И если Платон человек, то Сократ не будет им. Однако человеком называется, конечно, и Сократ, и Платон, и каждый из других. Следовательно, не каждый из отдельных людей есть человек, а тот, по причастности к которому каждый из них мыслится как человек и который не есть один из них. Такое же рассуждение приложимо к растению и ко всему остальному. Но разумеется, нелепо говорить, что никто из отдельных людей не есть человек и ни одно из растений не есть растение. Следовательно, нелепо и каждую исчисляемую вещь не называть единой по ее собственному смыслу.
С другой стороны, апория, приводимая против родового понятия, очевидно, относится и к подобному учению пифагорейцев. Именно, как родовой человек и не рассматривается наравне с видовым человеком (поскольку сам тогда будет видовым), и не существует обособленно (поскольку отдельные люди не станут тогда людьми через причастие к нему), и не объемлется ими (поскольку немыслимо, чтобы по причастию к нему существовало бесконечное число людей и чтобы оно обнимало и мертвых и живых), - ибо как это рассуждение приводит к апории, так и рассуждение о едином возбуждает еще большую апорию вследствие того, что это единое не рассматривается вместе с отдельными исчисляемыми, что оно не может быть установлено в качестве универсального числа, вследствие того что ему причастно не бесконечное множество [отдельных вещей].