[3. ТОЧКА]
Итак, точка, которую они называют знаком, не содержащим никаких промежутков, мыслится или в качестве тела, или в качестве бестелесного [293]. Но телом она у них не может быть, поскольку то, что не имеет протяжения, не есть тело. Следовательно, остается, чтобы она была бестелесной. А это опять неубедительно. Ведь бестелесное не мыслится способным что-нибудь порождать, будучи как бы тем, к чему нельзя и прикоснуться. А точка мыслится способной порождать линию. Следовательно, точка не есть знак, не содержащий никаких промежутков.
Далее, если явление есть видение неочевидного [294], то, поскольку в области явлений невозможно воспринять точки и границы чего-нибудь, не имеющей размеров, ясно, что подобное не может быть допущено и в области мыслимого. Но, как я установлю, в области чувственного ничего нельзя воспринять без размеров. Поэтому нельзя [найти этого] и в области мыслимого. Действительно, все наблюдаемое в области чувственного как граница чего-нибудь и точка воспринимается вместе с тем и в качестве крайней точки чего-нибудь, и в качестве части того, чего она является крайней точкой. Если мы, например, отнимаем ее, то должно уменьшиться и то, от чего произошло отнятие. Но то, что является частью чего-нибудь, тем самым оказывается способным и восполнять его. А то, что способно восполнять что-нибудь, во всяком случае должно увеличивать его размер. И то, что способно увеличивать размер, то по необходимости само обладает размером. Следовательно, всякая точка и крайний предел чего-нибудь в области чувственного, обладая известным размером, не является лишенным размеров. Вследствие этого если мы даже и мыслим предмет мысли на основании перехода от чувственного, то мы должны мыслить его вместе с тем и в качестве точки и предела линии, а вместе с этим и в качестве того, что способно его заполнять. Поэтому и оно обязательно должно обладать протяжением, будучи способно создавать протяжение.
И иначе. Они утверждают, что исходящая из центра прямая образует на плоскости круг вращением одного из своих концов. Это значит, что если конец данной прямой есть точка и если эта последняя в результате вращения отмеривает окружность, то она должна быть тем, что заполняет эту окружность. Но эта окружность во всяком случае обладает протяжением. Следовательно, и способная заполнить ее точка тоже должна обладать каким-то протяжением.
Далее, шар, как считают, касается плоскости в одной точке; и когда он катится, то он образует линию. Ясно, что линия образуется благодаря ниспадению точек, составляющих всю ее. Следовательно, если точка способна заполнить величину линии, то она и сама должна обладать величиной. Однако признано, что она есть то, что способно заполнить величину линии. Следовательно, она должна обладать и величиной и не быть лишенной размеров.
Однако Эратосфен [295], возражая против подобных аргументов, по своему обыкновению говорит, что точка не занимает никакого места и не отмеривает никаких отрезков линии, но что она создает линию своим движением. Этого, однако, невозможно себе представить. Ведь движение мыслится относительно того, что простирается от одного какого-нибудь места к какому-нибудь другому. Такова, например, вода. Если же мы будем представлять себе точку чем-то вроде этого, то получится, что она не может быть лишенной всяких частей, но что, наоборот, она обладает многими частями.
[4. ЛИНИЯ]
Вот что [можно сказать] о точке. Рассмотрим далее и то, что должно быть сказано о линии [296], поскольку она помещается после точки.
Итак, даже если согласиться, что какая-то точка существует, [все равно] линия не может существовать. Действительно, если она есть движение точки и длина без ширины, то она является или одной точкой, протянутой в длину, или многими точками, расположенными на известных расстояниях в виде ряда. Однако, как мы установим, она не есть одна точка, протянутая в длину, и, как мы укажем и на это, она не есть и множество точек, расположенных в виде ряда. Следовательно, линии не существует.
295
Эратосфен Киренский (III-II вв. до н. э.) — один из первых стоиков, глава Александрийской библиотеки после Аполлония Родосского, филолог, математик, географ, ученик Аристона Хиосского. — 149.