По сути дела полис был как минимумом, так и максимумом; он был тем самым минимумом, который требуется для организации независимого, самостоятельного общества. Но он также являлся и максимумом, вне которого не могла существовать политическая свобода. Иначе говоря, не могло осуществиться полноценное и равное сотрудничество всех членов общества в политическом управлении государством.
С этим политическим идеалом, с идеалом свободы, связано возникновение идеала открытого знания. Однако начало греческой философии было положено не в Греции, а в греческих городах, находившихся в Малой Азии; только благодаря контактам с большим числом разных культур у греков появился алфавит, а вслед за этим — зачатки научного знания. И лишь в определенной политической атмосфере, благодаря политическому идеалу полиса, сумел развиться и стать осознанным идеал открытого знания, превратившийся в ту точку отсчета, с которой общество начало оценивать самого себя и свои принципы.
Сами греки никогда не отрицали того факта, что начатки культуры они тем или иным образом восприняли от других народов. И они сами свидетельствовали об этом, иногда открыто, в текстах исторического содержания, а иногда при помощи мифологии. Даже медицина, как и многие другие искусства, пришла к ним в виде мифа или в виде готовой практики извне, прежде всего с Востока. Но открытое греческое общество оказалось готово воспринять эти знания. Это было общество, которое создало открытое судопроизводство, законодательную систему, отданную не в руки каких-нибудь жрецов, а в руки общественной структуры, обязывающей общество делать законы достоянием гласности. Справедливости ради следует отметить, что законы Хаммурапи были обнародованы за много лет до возникновения греческой культуры, однако свод греческих законов был доступен для каждого и хранился не в высшей судебной коллегии, не у жрецов и не у представителей специальной касты судей, а находился в распоряжении судебных структур, которые, конечно, не были демократическими в современном смысле этого слова, но тем не менее являлись открытыми и не требовали для участия в них каких-либо обрядов инициации. Поэтому внутри греческой культуры появилась традиция, параллельная экзегетической традиции евреев, — традиция толкования закона. Эта традиция утверждает, что существует писанный или неписаный закон, и закон этот таков, что судьи, в том числе те, которые еще только ожидают назначения на должность, способны понять его и использовать на благо общества. Это значит, что уголовное или гражданское судопроизводство с определенной стороны уже готово к восприятию рационального доказательства и к судебному разбирательству, основывающемуся на тех или иных законодательных принципах. Здесь мы сталкиваемся с развитием очень важного метода, по существу являющегося открытым. И хотя на первых порах этот метод использовался только в судопроизводстве, он проложил путь всестороннему обсуждению других основополагающих вопросов и принципов, а уже затем — общей концепции знания в широком смысле этого слова.
Мы не найдем другой такой сферы, где бы поворот в сторону открытого знания совершился столь наглядным образом, как в сфере представлений о математическом доказательстве, которые впервые возникли у греков. Возьмем к примеру теорему Пифагора, доказывающую, что площадь квадрата, стороной которого является гипотенуза прямоугольного треугольника, равна сумме площадей квадратов, стороны которых являются катетами этого треугольника.
Эта теорема в качестве эмпирического положения была известна еще древним египтянам, которые широко использовали ее при землемерных вычислениях. И понимали, как это представляется, что в руках у них надежное правило, не знающее исключений. Тем не менее египтяне даже не пытались доказать это правило; мало того, даже само понятие доказательства было чуждо египетской математике.
Напротив, Евклидовское геометрическое доказательство, как и предшествующее ему пифагоровское (несмотря на то, что доказательство у Пифагора было чрезвычайно примитивным, намного более примитивным, чем то, которое использовал 150 лет спустя Евклид в своих Основаниях геометрии), покоилось на незыблемых принципах. Это было абсолютное доказательство, справедливое для любого прямоугольного треугольника, не терпящее никаких исключений. Эмпирически, с точки зрения практики, у доказательства нет никакого преимущества. Теоремой Пифагора можно пользоваться независимо от того, знаешь ты ее доказательство или не знаешь, а доказательство является исключительно идеалом чистого умозрения. Обратим внимание на другое столь же знаменитое доказательство Евклида — доказательство того, что среди натуральных чисел не существует самого большого простого числа. Доказательство Евклида гласит: предположим, что существует самое большое простое число. Построим число, являющееся произведением всех простых чисел, включая то, которое считается самым большим, и прибавим к нему единицу. Это новое число — то есть произведение всех простых чисел плюс единица — либо само является простым числом, либо является произведением простых чисел, каждое из которых больше, чем число, названное нами самым большим простым числом. И действительно, рассматриваемое нами число, то есть произведение всех простых чисел, включая то, которое считается самым большим, плюс единица, не делится без остатка ни на самое первое из простых чисел, то есть на два, ни на три, ни на пять, ни на семь, ни на одиннадцать, ни на тринадцать, ни на любое другое простое число. Значит, оно может делиться только на такое простое число, которое больше того числа, про которое мы предположили, что оно является самым большим простым числом. Следовательно, наше исходное предположение неверно и самого большого простого числа не существует. Ради чего мы целиком привели это доказательство? Ради двух вещей, которые мы можем из него понять. Во-первых, что это доказательство не потеряло своей актуальности и поныне и является базисом того, что в современной математике называется теорией чисел. Большое число теорем в той или иной мере связано с этим евклидовским доказательством, в том числе доказанное уже в 19 столетии утверждение, что между кратными числами находится по крайней мере одно простое число.