Giese was an unemotional man, but then in the study of Solaris emotion is a hindrance to the explorer. Imagination and premature theorizing are positive disadvantages in approaching a planet where — as has become clear — anything is possible. It is almost certain that the unlikely descriptions of the ‘plasmatic’ metamorphoses of the ocean are faithful accounts of the phenomena observed, although these descriptions are unverifiable, since the ocean seldom repeats itself. The freakish character and gigantic scale of these phenomena go too far outside the experience of man to be grasped by anybody observing them for the first time, and who would consider analogous occurrences as ‘sports of nature,’ accidental manifestations of blind forces, if he saw them on a reduced scale, say in a mud-volcano on Earth.
Genius and mediocrity alike are dumbfounded by the teeming diversity of the oceanic formations of Solaris; no man has ever become genuinely conversant with them. Giese was by no means a mediocrity, nor was he a genius. He was a scholarly classifier, the type whose compulsive application to their work utterly divorces them from the pressures of everyday life. Giese devised a plain descriptive terminology, supplemented by terms of his own invention, and although these were inadequate, and sometimes clumsy, it has to be admitted that no semantic system is as yet available to illustrate the behavior of the ocean. The ‘tree-mountains,’ ‘extensors,’ ‘fungoids,’ ‘mimoids,’ ‘symmetriads’ and ‘asymmetriads,’ ‘vertebrids’ and ‘agilus’ are artificial, linguistically awkward terms, but they do give some impression of Solaris to anyone who has only seen the planet in blurred photographs and incomplete films. The fact is that in spite of his cautious nature the scrupulous Giese more than once jumped to premature conclusions. Even when on their guard, human beings inevitably theorize. Giese, who thought himself immune to temptation, decided that the ‘extensors’ came into the category of basic forms. He compared them to accumulations of gigantic waves, similar to the tidal movements of our Terran oceans. In the first edition of his work, we find them originally named as ‘tides.’ This geocentrism might be considered amusing if it did not underline the dilemma in which he found himself.
As soon as the question of comparisons with Earth arises, it must be understood that the ‘extensors’ are formations that dwarf the Grand Canyon, that they are produced in a substance which externally resembles a yeasty colloid (during this fantastic ‘fermentation,’ the yeast sets into festoons of starched open-work lace; some experts refer to ‘ossified tumors’), and that deeper down the substance becomes increasingly resistant, like a tensed muscle which fifty feet below the surface is as hard as rock but retains its flexibility. The ‘extensor’ appears to be an independent creation, stretching for miles between membranous walls swollen with ‘ossified growths,’ like some colossal python which after swallowing a mountain is sluggishly digesting the meal, while a slow shudder occasionally ripples along its creeping body. The ‘extensor’ only looks like a lethargic reptile from overhead. At close quarters, when the two ‘canyon walls’ loom hundreds of yards above the exploring aircraft, it can be seen that this inflated cylinder, reaching from one side of the horizon to the other, is bewilderingly alive with movement. First you notice the continual rotating motion of a greyish-green, oily sludge which reflects blinding sunlight, but skimming just above the ‘back of the python’ (the ‘ravine’ sheltering the ‘extensor’ now resembles the sides of a geological fault), you realize that the motion is in fact far more complex, and consists of concentric fluctuations traversed by darker currents. Occasionally this mantle turns into a shining crust that reflects sky and clouds and then is riddled by explosive eruptions of the internal gases and fluids. The observer slowly realizes that he is looking at the guiding forces that are thrusting outward and upward the two gradually crystallizing gelatinous walls. Science does not accept the obvious without further proof, however, and virulent controversies have reverberated down the years on the key question of the exact sequence of events in the interior of the ‘extensors that furrow the vast living ocean in their millions.
Various organic functions have been ascribed to the ‘extensors.’ Some experts have argued that their purpose is the transformation of matter; others suggested respiratory processes; still others claimed that they conveyed alimentary materials. An infinite variety of hypotheses now moulder in library basements, eliminated by ingenious, sometimes dangerous experiments. Today, the scientists will go no further than to refer to the ‘extensors’ as relatively simple, stable formations whose duration is measurable in weeks — an exceptional characteristic among the recorded phenomena of the planet.
The ‘mimoid’ formations are considerably more complex and bizarre, and elicit a more vehement response from the observer, an instinctive response, I mean. It can be stated without exaggeration that Giese fell in love with the ‘mimoids’ and was soon devoting all his time to them. For the rest of his life, he studied and described them and brought all his ingenuity to bear on defining their nature. The name he gave them indicates their most astonishing characteristic, the imitation of objects, near or far, external to the ocean itself.
Concealed at first beneath the ocean surface, a large flattened disc appears, ragged, with a tar-like coating. After a few hours, it begins to separate into flat sheets which rise slowly. The observer now becomes a spectator at what looks like a fight to the death, as massed ranks of waves converge from all directions like contorted, fleshy mouths which snap greedily around the tattered, fluttering leaf, then plunge into the depths. As each ring of waves breaks and sinks, the fall of this mass of hundreds of thousands of tons is accompanied for an instant by a viscous rumbling, an immense thunderclap. The tarry leaf is overwhelmed, battered and torn apart; with every fresh assault, circular fragments scatter and drift like feebly fluttering wings below the ocean surface. They bunch into pear-shaped clusters or long strings, merge and rise again, and drag with them an undertow of coagulated shreds of the base of the primal disc. The encircling waves continue to break around the steadily expanding crater. This phenomenon may persist for a day or linger on for a month, and sometimes there are no further developments. The conscientious Giese dubbed this first variation a ‘stillbirth,’ convinced that each of these upheavals aspired towards an ultimate condition, the ‘major mimoid,’ like a polyp colony (only covering an area greater than a town) of pale outcroppings with the faculty of imitating foreign bodies. Uyvens, on the other hand, saw this final stage as constituting a degeneration or necrosis: according to him, the appearance of the ‘copies’ corresponded to a localized dissipation of the life energies of the ocean, which was no longer in control of the original forms it created.
Giese would not abandon his account of the various phases of the process as a sustained progression towards perfection, with a conviction which is particularly surprising coming from a man of such a moderate, cautious turn of mind in advancing the most trivial hypothesis on the other creations of the ocean. Normally he had all the boldness of an ant crawling up a glacier.