Но роль спутников этим не исчерпывается. Действует следующий многоступенчатый механизм. Раз в несколько сот миллионов лет достаточно большие тела размером в несколько километров сталкиваются с крупными спутниками, например, Сатурна. Удар с космической скоростью приводит к откалыванию нескольких тел размером в десятки и сотни километров. Гораздо чаще более мелкие пришельцы, а также взаимные столкновения приводят к дальнейшему дроблению вплоть до песчинок и пылинок. Пылевой комплекс возникает как результат динамического равновесия. Частицы его выпадают обратно на спутники, оседают на планету, а взамен их поступают новые. Равновесие это отнюдь не абсолютное. После крупного столкновения в систему впрыскивается огромное количество материала, а в промежутках между катастрофами пояса истончаются.
Раскрывается удивительная картина. Похоже, все три приведенные выше причины, решающие загадку колец, действуют! Но по порядку.
Представляется несомненным, что первичные кольца возникли на поздней стадии формирования Солнечной системы. В близкой к планете зоне приливные силы препятствовали возникновению спутников, и материя осталась собранной в тела размерами до десяти — максимум ста метров. Дальше гравитационное взаимодействие колец и спутников привело к структурированию колец и сообщило им динамическую устойчивость.
Столкновительный механизм, созидающий и разрушающий кольца, безусловно, также действует. Так, в системе Урана лишь внешнее плотное колечко ε находится вне аэродинамической опасности. Частицы остальных тонких колец должны были бы выпасть на планету из-за сопротивления протяженной атмосферы. Снимки с «Вояджера-2» показывают шлейф мелкой пыли от ε вниз. Таким образом, все внутренние кольца Урана — это просто зоны, где пыль задерживается на некоторое время, прежде чем выпасть на планету.
Кольцо Е Сатурна — также результат динамического равновесия потоков вещества, поступающего от недавно открытых ледяных фонтанов Энцелада и от метеоритных ударов по поверхностям спутников в этой области и постепенно выпадающего из системы. Вообще большинство колец, как и мы с вами, живет за счет постоянного обновления материи, из которой они состоят. Роль столкновительного механизма пока неясна лишь для главных, наиболее плотных и устойчивых колец из крупных частиц. Часть ученых считают, что главные кольца — реликтовые образования, содержащие частицы многомиллиардолетнего возраста. Другая часть склоняется к тому, что продленный спутниками период полураспада кольца менее миллиарда лет, и мы наблюдаем пылевые комплексы, частицы которых значительно моложе планет и спутников. Кольца Юпитера, Урана, Нептуна — относительно старые равновесные образования; кольцо Сатурна относительно молодо и теряет вещества больше, чем получает извне.
Для решения вопроса желательны и новые экспериментальные данные, и усилия теоретиков. Нужно рассчитать поведение комплекса на 5 млрд. лет. Это гораздо труднее, чем на относительно короткий срок, так как — на первый взгляд — пренебрежимо малые силы могут изменить поведение системы. Вот простой пример. За тысячу лет из-за эффектов теории относительности перигелий Меркурия смещается на 7′, т.е. всего на четверть видимого с Земли диаметра Луны. Но за миллиард лет перигелий совершит 332 лишних оборота вокруг Солнца! Будем надеяться, что в ближайшее время возраст колец будет надежно установлен.
Теперь ясна и ситуация с внутренними планетами. Меркурий и Венера лишены спутников и могли бы иметь лишь первичные кольца — механизм пополнения отсутствует. Но физические условия во внутренней области Солнечной системы гораздо менее благоприятны для выживания колец. Кольца из льда и инея (как у Сатурна) просто бы испарились. Силикатные или угольные частицы (как у Урана) вплоть до метровых размеров за миллиард лет упали бы на Венеру (на Меркурий гораздо раньше) под действием эффекта Пойнтинга-Робертсона.
Около Земли эффект Пойнтинга-Робертсона действует лишь в два раза слабее, чем у Венеры, и тоже должен разрушить гипотетическое первичное кольцо. Кроме того, сильным разрушителем в первый миллиард лет существования Земли была тяжелая Луна, находившаяся тогда в несколько раз ближе к Земле. Массивность Луны лишает нас и обновляющегося кольца. Как известно из опытов со сверхскоростными столкновениями, падение метеорита на поверхность небесного тела вызывает выброс огромных масс вещества: в 1000 и даже в 10000 раз больше массы ударника. В соответствии с законом сохранения энергии скорость вылетающих осколков раз в сто ниже. Поскольку вторая космическая скорость на поверхности Луны достаточно велика (2,4 км/с), то выброшенное вещество падает обратно на Луну и космос остается чистым. В действительности ситуация несколько сложнее. Осколки вылетают с разными скоростями, и ничтожная их часть все же попадает на геоцентрические орбиты. Поэтому плотность материи в околоземном пространстве чуть выше, чем в межпланетном. И на Земле в коллекциях метеоритов присутствует несколько десятков лунных осколков. Все же настоящего пылевого комплекса вокруг Земли быть не может, по крайней мере пока в Луну не врежется малая планета в десятки километров диаметром. Подобные события случаются раз в сотни миллионов лет, если не реже.