К двигателям малой тяги можно отнести и солнечный парус. Давление света в обычных условиях едва или вовсе не ощутимо. Но если в космосе развернуть парус из тончайшей пленки площадью в несколько тысяч квадратных метров, то этого хватит для создания малой, но длительной тяги. Запаса топлива как для корабельного, так и для космического паруса не требуется. Солнечный парус пока лишь испытывается: только недавно были созданы легкие, прочные и непрозрачные пленки. Обратите внимание: пленка должна быть непрозрачной (лучше — зеркальной), иначе свет ее «не заметит» и никакого давления не окажет. Полеты под солнечными парусами — дело ближайшего будущего. Где же они наиболее эффективны?
Сила солнечного излучения ослабевает обратно пропорционально квадрату расстояния от Солнца. В окрестностях Марса она в два раза слабее, чем у Земли. В окрестностях Юпитера — в 30 раз слабее, Нептуна — в 900 раз. Поэтому солнечный парус разумно применять для маневрирования на околоземных орбитах и для полетов к Марсу и во внутренние области Солнечной системы: к Венере, Меркурию, Солнцу. При полете к Солнцу надо еще добиться, чтобы парус не сгорел и не расплавился.
Те же обстоятельства определяют и эффективность солнечных батарей. За орбитой Марса они неэкономичны. Лететь к Юпитеру и дальше можно только с атомными источниками электричества на борту.
При движении на высотах 200-1000 км. ИСЗ медленно, но неуклонно тормозится сопротивлением верхних слоев атмосферы. Спутник движется в окружающей среде со скоростью порядка 8 км/с. По сравнению с ней собственная скорость атмосферы мала. Сопротивление можно считать направленным прямо против вектора скорости ИСЗ. Ориентация орбиты в этом случае сохраняется. Но размеры и форма меняются существенно. Плотность воздуха падает с высотой очень быстро. Падает с высотой и скорость ИСЗ. Поэтому для низкоперигейного ИСЗ, эксцентриситет орбиты которого не исчезающе мал — хотя бы больше 0,01 — основное торможение осуществляется в окрестности перигея. Из-за этого на каждом витке значительно уменьшается высота апогея, и лишь ненамного — высота перигея. Орбита становится все ближе и ближе к круговой. Далее торможение равномерно распределяется по траектории и спутник начинает плавное снижение по спирали. Парадоксально, но скорость его при этом увеличивается!
Дело тут в следующем. Торможение в атмосфере приводит к уменьшению механической энергии спутника. Последняя складывается из кинетической и потенциальной (гравитационной). Снижаясь, ИСЗ теряет потенциальную энергию. Расчеты показывают, что несмотря на потерю механической энергии, кинетическая энергия возрастает. Так происходит вплоть до входа в плотные слои атмосферы (для Земли — ниже 150 км.). Там уже сопротивление воздуха становится сравнимым с притяжением. В результате — перегрузки, обгорание и падение скорости. Мелкие спутники сгорают, не долетая до земли. Крупные спутники и последние ступени ракет-носителей обгорают, разваливаются, а их обломки падают на Землю со скоростями в десятки метров в секунду. И лишь самые крупные долетают до поверхности планеты с существенно большими скоростями. Таковы, скажем, орбитальные станции «Скайлэб», «Салют», «Мир». Когда кончается ресурс такой станции, ее спуск специально регулируют, чтобы упала она в ненаселенной местности или в океан. К сожалению, это не всегда удавалось. «Скайлэб» и «Салют-7» разбились не совсем так, как планировалось в центрах управления. К счастью, катастроф все же не произошло.
До сих пор мы рассматривали атмосферу лишь как причину торможения ИСЗ. Вспомним о самолетах — воздух может быть и источником подъемной силы. Это качество давно уже используется в космонавтике. При спуске пилотируемые космические корабли благодаря небольшой подъемной силе сейчас сравнительно долго проходят верхние слои атмосферы, что значительно уменьшает перегрузки. Иногда используется эффект отражения от атмосферы. Это явление напоминает пускание «блинчиков» на воде, когда брошенный полого плоский камень многократно отражается от водной глади.