Распределение плотности потока излучения, испускаемого Солнцем, по его поверхности достаточно равномерное, но объемный характер излучения приводит к некоторому спаду яркости от центра солнечного диска к краю.
В центре солнечного диска визуальная яркость в 1,22 раза больше средней. Ближе к краю яркость диска уменьшается, изменяется спектр излучения (относительное содержание красных лучей по мере удаления от центра диска возрастает), вследствие того что цветовая температура по краям ниже, чем в центре.
Весь поток излучения передается к внешним частям Солнца радиационным путем, и только в области, расположенной непосредственно под видимой поверхностью Солнца, имеет место конвективный процесс передачи энергии. Фотосфера, видимая поверхность Солнца, в действительности представляет собой очень тонкий слой, толщиной всего несколько сотен километров. Лучи, поступающие от краев солнечного диска, проходят сквозь относительно большие толщи вещества, поэтому от глубоких, более горячих слоев фотосферы приходит сравнительно меньший поток излучения, что вызывает так называемое потемнение к краю диска. Покраснение излучения к краю диска объясняется тем, что длинноволновая часть излучения легче, чем коротковолновая, проникает сквозь толщи вещества.
Космическое солнечное излучение
на границе с атмосферой Земли
Для точных измерений КПД солнечных элементов необходимо обеспечить полное воспроизведение стандартных параметров солнечного излучения, таких, как плотность потока, спектральное и угловое распределение энергии, однородность и стабильность потока. Стандартные параметры солнечного излучения должны быть согласованы — в данном случае между разработчиками солнечных элементов в разных странах мира.
При измерении характеристик солнечных элементов, предназначенных для космоса, в качестве стандарта повсеместно приняты условия, соответствующие условиям солнечного облучения плоскости, расположенной по нормали к направлению на Солнце и удаленной от неги на расстояние, равное одной астрономической единице (среднее расстояние от Земли до Солнца). Энергетическую облученность Ec, соответствующую этим условиям (фактически, условиям площадки, расположенной на границе между атмосферой Земли и космосом), называют солнечной постоянной. Угловой размер Солнца при этом составляет 31′59″, следовательно, в каждую точку освещаемой элементарной площадки попадает пучок лучей, заключенный в конусе с углом ±16′. Поток излучения идеально однороден.
На протяжении последних пятидесяти лет принятое значение солнечной постоянной уточнялось не один раз: в 1923 г. в первых работах по солнечным элементам использовалось 1350 Вт/м2, предложенное К. Дж. Абботом; в 1954 г. Ф. Джонсон получил 1393 Вт/м2; в начале 70-х годов в качестве стандарта было выбрано 1353 Вт/м2, выведенное в США Μ. П. Такаекарой; в настоящее время наиболее достоверным считается 1360 Вт/м2, определенное в СССР Е. А. Макаровой и А. В. Харитоновым.
Зная абсолютное значение солнечной постоянной, можно найти энергию, которая поступила на поверхность солнечных элементов и батарей, работающих во внеатмосферных условиях, что требуется при расчетах их КПД. Однако, чтобы определить полезную электрическую энергию, полученную от солнечного элемента, необходимо точно измерить также спектральное распределение падающей радиации, особенно в интервале спектральной чувствительности современных солнечных элементов (для элементов из кремния — от 0,3 до 1,1 мкм).
Спектральное распределение энергии излучения Солнца неоднократно измерялось как с поверхности Земли, так и непосредственно за пределами атмосферы.
Анализ разнообразной научной информации о характеристиках солнечного излучения дает все основания отдать предпочтение спектральному распределению, предложенному Макаровой и Харитоновым, которое приводится в табл. 1 Приложения.
Именно это распределение используется сейчас и Европейским космическим центром при определении КПД солнечных элементов.
Изменение солнечной постоянной вследствие цикличности солнечной активности изучалось многими исследователями. Анализ наземных измерений солнечной постоянной показывает, что среднее квадратическое отклонение результатов ее определения, связанное с явлениями, происходящими на Солнце, составляет ±0,1 %, а с возможными колебаниями поглощения радиации внутри орбиты Земли — ±0,14 %. Высотные измерения показали, что во вторую половину 22-летнего солнечного цикла солнечная постоянная изменилась не более чем на 0,75 %. Дальнейшие исследования с помощью аппаратуры, установленной на ориентируемых космических станциях, позволят определить изменения солнечной постоянной за больший период времени.
Реальные условия эксплуатации батарей космического назначения незначительно отличаются от условий, принятых в качестве стандарта. Спектральное распределение энергии излучения (среднее по диску) постоянно по всей области пространства, где работают космические аппараты. Угловая расходимость пучка отличается не слишком сильно, составляя на среднем расстоянии орбиты Меркурия около ±42′, Венеры ±22′, Марса ±11′, Юпитера ±3′. По вычислениям, выполненным применительно к астрономическим условиям, характерным для 80-х годов нашего столетия, при солнечной постоянной 1360 Вт/м2 плотность потока солнечного излучения на границе атмосферы Земля изменяется от среднего значения в пределах ±3,5 % — от 1406 Вт/м2 в начале января каждого года, когда Земля находится на минимальном расстоянии от Солнца, до 1315 Вт/м2 в июле, когда Земля расположена в дальней точке орбиты.
Для прогнозирования выходной мощности расположенных на низколетящих спутниках Земли батарей, состоящих из солнечных элементов, способных преобразовывать в электрическую энергию и ту часть солнечного излучения, которое может попасть на тыльную поверхность батареи, необходимо знать интегральный коэффициент отражения солнечного излучения от поверхности Земли (альбедо Земли). Величина альбедо может колебаться в зависимости от рельефа местности, состояния атмосферы и облачности в значительных пределах: от 0,1 (ясная погода) до 0,9 (Земля покрыта плотным слоем облаков). Обычно в среднем альбедо Земли для большинства орбит низколетящих спутников составляет 0,35—0,3.
Отраженное от Земли и ее облачного покрова солнечное излучение, так же как и тепловое излучение Земли в инфракрасной области спектра, влияет и на рабочую температуру космических аппаратов. Поток собственного теплового излучения Земли, попадающий на солнечную батарею, оценивается обычно для низколетящих спутников Земли величиной 200–300 Вт/м2. Его влияние проявляется не только в повышении равновесной температуры батареи на освещаемой части орбиты (явление несомненно отрицательное из-за заметного падения мощности батареи с ростом температуры), но и в подогреве батареи на участке орбиты, проходящем в тени Земли, что предохраняет батарею от чрезмерно резкого термоциклирования и положительно сказывается на ее работоспособности при длительной эксплуатации на орбите.
Вернемся к основному назначению солнечных элементов и батарей — преобразовывать излучение Солнца в электроэнергию с возможно большей эффективностью. Установлено, что в сравнительно узком спектральном интервале от 0,3 до 1,1 мкм разница в значениях суммарного количества падающей на кремниевые солнечные элементы радиации, определяемого при использовании солнечной постоянной по разным литературным источникам, не очень велика и составляет: 991 Вт/м2 (Μ. П. Такаекара), 1039 Вт/м2 (Ф. Джонсон), 1014 Вт/м2 (Е. А. Макарова и А. В. Харитонов).