Выбрать главу

Следует отметить, что системы с дихроическими зеркалами избавляют разработчиков элементов от необходимости решать сложную проблему, возникающую при изготовлении монолитных каскадных элементов, получаемых эпитаксиальным наращиванием слоев, — сочетать в каскадном элементе слои с близкими постоянными кристаллической решетки и коэффициентами термического расширения.

В будущем, возможно, вообще отпадет необходимость в использовании дихроических зеркал при применении для преобразования солнечного излучения и одновременного расщепления спектра солнечных элементов (см. с. 119), прозрачных в длинноволновой области за краем основной полосы поглощения с высоко-отражающим металлическим покрытием или зеркалом на тыльной поверхности.

Глава 5

СОЛНЕЧНЫЕ БАТАРЕИ

И НАЗЕМНЫЕ ФОТОГЕНЕРАТОРЫ

Жесткие и гибкие солнечные батареи с высоким отношением мощности к весу

Солнечные батареи космических аппаратов представляют собой сложные электромеханические устройства, обеспечивающие электрическое соединение солнечных элементов, их размещение на единой несущей основе, прочность и устойчивость всей конструкции при вибрации и маневрах, а также возможность ее раскрытия, монтажа и ориентации в условиях космоса.

Главные элементы конструктивной схемы ориентируемой солнечной батареи — несущая опора, или подложка, на которой монтируются солнечные элементы и межэлементные соединения, силовая конструкция (рамы, балки, мачты и т. п.), механизмы и силовые узлы системы раскрытия и ориентации.

В зависимости от механических характеристик несущей опоры, или подложки, солнечные батареи разделяют на конструкции с жесткой, полужесткой и гибкой несущими поверхностями.

Жесткая несущая конструкция солнечных батарей, как правило, состоит из двух плоских тонких листов и находящегося между ними сотового наполнителя. Она характеризуется весьма большой частотой собственных колебаний и высокой жесткостью при работе на изгиб, обеспечивающей малые прогибы панелей. Удельные характеристики таких солнечных батарей: 100–120 Вт/м2, 20–40 Вт/кг.

Гибкие солнечные батареи имеют несущую подложку, характеризуемую нулевой жесткостью на изгиб, развертываемую и удерживаемую в рабочем положении с помощью раскладных мачт, балок или пантографов. Конструкции солнечных батарей с гибкой несущей поверхностью могут быть двух типов: свертываемые, пли рулонные, и складные, или пакетные. Удельные характеристики гибких батарей зависят от типа применяемых солнечных элементов и могут составить 100–120 Вт/м2 и 40–80 Вт/кг.

За рубежом для космических аппаратов, работающих на геосинхронной орбите, создаются так называемые гибридные солнечные батареи, состоящие из жестких панелей, которые располагаются близко к корпусу космического аппарата и вырабатывают энергию на участке перелета с опорной орбиты на стационарную, п гибких солнечных батарей, которые развертываются на рабочей орбите. Необходимость применения таких батарей обусловлена тем, что при использовании двигателей большой тяги для межорбитальной транспортировки космического аппарата гибкие солнечные батареи не выдерживают возникающих перегрузок. Примером гибридной конструкции может служить солнечная батарея, схематически изображенная на рис. 5.1.

Принципы, заложенные в конструкцию подобных солнечных батарей, использованы также при разработке энергетического модуля, который предназначается для увеличения продолжительности пребывания в космосе орбитальной ступени транспортного космического аппарата «Спейс Шаттл», а также для энергоснабжения и обслуживания на орбите автономных космических объектов. Общий вид такого энергомодуля в пристыкованном к орбитальной ступени транспортного космического аппарата состоянии и в свободном полете схематически изображен на рис. 5.2.

Pис. 5.1. Схема гибридной солнечной батареи в сложенном (а), частично раскрытом (б) и полностью раскрытом (в) состояниях

1 — жесткая панель; 2 — трубчатая балка; 3 — гибкие панели; 4 — гибкое крыло; 5 — поворотный механизм

Рис. 5.2. Схема энергетического модуля, пристыкованного к орбитальной ступени транспортного космического аппарата (а) и находящегося в свободном полете (б)

1 — панель солнечной батареи (размер ~ 40 × 10 м); 2 — узел стыковки с полезной нагрузкой; 3 — панель радиатора системы терморегулирования; 4 — отсек оборудования; 5 — антенна; 6 — узлы стыковки с транспортным космическим аппаратом

Поскольку основной вклад в массу гибких панелей дают солнечные элементы, очень актуальной является задача уменьшения их толщины и повышения удельной мощности. Наиболее перспективны в этом отношении ультратонкие (толщиной 50 мкм) кремниевые солнечные элементы и солнечные элементы на основе гетероструктуры AlGaAs — GaAs. Увеличение размера солнечных элементов и использование элементов с обволакивающими тыльными контактами упрощает сборку и снижает удельную стоимость панелей солнечных батарей. Ожидается, что применение всех перечисленных конструктивных мероприятий должно привести к снижению удельной массы солнечных батарей и получению удельных характеристик, достигающих 120–160 Вт/м2 и 200 Вт/кг.

Температурная стабилизация, просветление и защита солнечных батарей от радиации с помощью оптических покрытий

Интенсивные потоки частиц, в основном свободных электронов и протонов, образующих в околоземном пространстве так называемые радиационные пояса, приводят к ухудшению электрических параметров полупроводниковых приборов, установленных на космических аппаратах. Особенно сильно это отрицательное влияние сказывается на полупроводниковых солнечных батареях, которые с целью максимального использования солнечного излучения приходится монтировать на внешней поверхности аппаратов или на специальных выносных панелях.

Хотя в настоящее время предложены интересные способы повышения радиационной стойкости самих полупроводниковых материалов, такие, как введение ионов лития или высокотемпературный отжиг (до 400o C для кремния и до 200–250 °C для арсенида галлия), создание покрытий из прозрачных и радиационно стойких материалов по-прежнему является наиболее эффективным способом защиты солнечных батарей.

Эффективность прозрачной защиты основана на том, что ею сильно «срезаются» или вообще не пропускаются к полупроводнику частицы малых энергий, которых особенно много в спектре радиационных поясов Земли[9]. К тому же именно частицы малых энергий наиболее разрушительно действуют на солнечные элементы, уменьшая их КПД.

Основная трудность практического решения этой проблемы состоит в том, что, кроме защиты от повреждающего действия радиации, оптические покрытия должны обладать высокими просветляющими и теплорегулирующими свойствами, т. е. уменьшать коэффициент отражения в рабочей области спектра и предохранять солнечные элементы от перегрева путем увеличения интегрального коэффициента собственного теплового излучения поверхности ε до значений в пределах 0,8–0,9. Необходимость просветления рабочей поверхности вызвана высоким коэффициентом отражения (35–40 %) чистой полированной поверхности солнечных элементов в области спектральной чувствительности 0,4–1,1 мкдо; это означает, что без уменьшения потерь на отражение не могут быть получены солнечные элементы с высоким КПД. Увеличение собственного теплового излучения поверхности солнечного элемента особенно важно в связи с тем, что для полированной высоколегированной (концентрация примесей (1–2)×102° см-3) поверхности кремниевых элементов без теплорегулирующего покрытия е составляет 0,19—0,24.

вернуться

9

Энергетический спектр протонов и электронов в поясах радиации носит спадающий характер — суточные дозы частиц резко уменьшаются с увеличением их энергии.