Выбрать главу

Е = h,

где Е — энергия кванта; h — коэффициент, так называемая постоянная Планка, имеющая значение 6,6·1027 эрг/сек; — частота световых колебаний.

Лучи света, падая на поверхность некоторых металлов, выбивают из нее электроны (фотоэлектрический эффект). Количество выбитых электронов уменьшается по мере ослабления интенсивности падающего света. Но одни лучи при любой интенсивности света дают фотоэффект, другие, более длинноволновые, не дают его даже в том случае, если мощность их потока увеличена во много раз. Объяснить эти явления волновая теория не могла. Зато представление о свете как о потоке корпускул оказалось очень удобным для объяснения: одни частицы света достаточно велики для того, чтобы вызвать фотоэлектрический эффект, другие, меньшие по размерам, не могут выбить из атома электрон. Реакция, как установил Эйнштейн, идет по такому типу: одна световая частица — один выбитый электрон; при изменении интенсивности света изменяется количество элементарных реакций. Когда же величина корпускулы недостаточна для выбивания электрона, этот «недостаток» света нельзя восполнить увеличением его интенсивности.

Чтобы примирить «новорожденную» квантовую теорию с явлениями дифракции и интерференции света, находившими дотоле чисто волновое объяснение, Эйнштейн предположил, что световые волны очень слабы («волны-призраки»). Роль их сводится к переносу и распределению фотонов в пространстве, что и отражается в явлениях дифракции и интерференции света. Эта гипотеза в дальнейшем (1923—1924 гг. и 1951 —1952 гг.) была развита французским физиком Луи де Бройлем и существует поныне как один из вариантов объяснения единства волновой и корпускулярной (квантовой) природы света. Согласно этой гипотезе, световая волна очень малой амплитуды ведет и направляет частицу, или квант, представляющую собой область волны с высокой концентрацией энергии.

Другое, статистическое объяснение единства волновых и корпускулярных свойств света, выдвинутое немецким физиком Максом Борном и развитое датчанином Нильсом Бором, немецким физиком Вернером Гейзенбергом, пользуется в наши дни большим признанием Это направление начало свое триумфальное развитие с создания Н. Бором в 1913 г. теории строения атома.

Лучи, исходящие от раскаленных твердых и жидких тел или от газов под высоким давлением, образуют непрерывный спектр в виде сплошной полосы, в котором лучи с волнами различной длины непрерывно переходят один в другой. Иной вид имеют спектры светящихся газов. Они состоят из отдельных резких линий, отделенных друг от друга широкими темными промежутками. Эти спектры, называемые линейчатыми, образуются при излучении света отдельными атомами. Очевидно, атомы каждого элемента излучают свет лишь некоторых частот, т. о. кванты определенной величины.

Если в пламя газовой горелки внести крупинку вещества, то в результате сгорания, испарения, нагрева оно даст свой характерный линейчатый спектр. В широких масштабах опыты такого рода впервые были проведены немецкими учеными Р. Бунзеном и Г. Кирхгофом. Они установили, что каждый химический элемент при излучении дает свой, индивидуальный, набор спектральных линий.

Следовательно, по характеру спектра неизвестного вещества можно определить его химический элементарный состав. Для этого достаточно сфотографировать исследуемый спектр и сравнить его со спектрами известных химических элементов. Если же вещество содержит в своем спектре линии, не похожие на линии известных элементов, это означает, что с помощью метода спектрального анализа открыт новый, дотоле неизвестный науке химический элемент. Именно таким способом Кирхгоф и Бунзен открыли легкие металлы рубидий и цезий, а другие ученые — таллий, индий, галлий.

С развитием квантовой механики спектроскопия приобрела прочную теоретическую базу. Спектральный анализ стал точным и наиболее совершенным методом исследования качественного состава и строения вещества.

Нет таких областей в современной науке, где не нашел бы себе применения этот изящный, глубокий и бесконечно содержательный канал связи с микромиром, уводящий нас в самые глубины материи и в бесконечные холодные бездны Вселенной. Мощь современных спектральных приборов такова, что астрофизик с их помощью улавливает, раскладывает в миниатюрную радугу и фотографирует излучение невидимых простым глазом, невообразимо далеких от нас звезд. Пространствовав по космическим далям многие тысячи и миллионы лет, этот свет доносит до нас правдивую и точную информацию о далеких, но близких нам по своей природе звездах, о бесконечно разнообразных мирах. Частокол светлых и темных линий, запечатленных в спектре-негативе, рассказывает о химическом составе атмосферы звезды — стоит лишь сопоставить его с атласом спектров — энциклопедией спектроскопии. Сегодня мы знаем, что какими бы необъятными пространствами Вселенной ни был отделен от нас этот далекий мир, состоит он из тех же атомов, из таких же химических элементов, как и наша Земля. Материальное единство мира доказывается методом спектрального анализа просто, логично и убедительно. Степень почернения линий спектра безмолвно говорит опытному глазу о температуре звезды, а ничтожное смещение спектральных линий к красному концу (так называемое доплеровское смещение) — о скоростях разлетающихся галактик.