Лучи изменяют природу организмов
Современная наука достигла больших успехов в изучении проблемы наследственности. Доказана решающая роль нуклеиновых кислот, а также белков в накоплении, хранении, передаче наследственной информации от родителей к детям. Но нуклеиновые кислоты и белки легко поглощают фотоны ультрафиолетового света. Вызывая изменения структуры биополимеров, их частичную денатурацию, эти лучи могут вносить изменения в наследственную информацию. Если облучению подверглись половые клетки организма, то изменения, вызванные ультрафиолетовыми лучами в молекулах нуклеиновых кислот, будут свойственны всему организму, выросшему из этих клеток, и даже его потомкам. Стойкие, передающиеся по наследству изменения носят название мутаций, а вызывающий их агент называется мутагенным. Мутагенное действие ультрафиолетовых лучей было обнаружено в 1932—1934 гг. американским генетиком Е. Альтенбургом в опытах на мушках дрозофилах. Взрослые мушки, выросшие из облученных яиц, отличались от своих собратьев формой крыльев, цветом, размерами брюшка и т. п.
Появление мутаций при действии ультрафиолетовых лучей наблюдается у всех одноклеточных и простейших многоклеточных организмов, на семенах многих растений. Если облучать ультрафиолетовыми лучами бактерии, простейших, клеточные культуры, то относительно небольшие дозы облучения увеличивают частоту возникающих мутаций от 1 тыс. до 1 млн. раз. При больших дозах облучения почти все выживающие клетки оказываются носителями тех или иных наследственных повреждений. Однако малая проникающая способность ультрафиолетовых лучей ограничивает возможности их использования для получения мутаций. У большинства организмов, и прежде всего у млекопитающих, половые клетки расположены в теле так глубоко, что ультрафиолетовые лучи их не достигают. (Только более крупные и высокоэнергичные кванты рентгеновских и гамма-лучей обладают достаточной для этого проникающей способностью.) И все же мутагенная активность ультрафиолетового излучения находит практическое применение. Лучистые и плесневые грибки, микроскопически малые по величине, производят могучие лечебные препараты — антибиотики. В повышении «производительности труда» грибков надежным помощником служат ультрафиолетовые лучи. Среди потомства облученных и мутировавших грибков отбирают наиболее производительных, которых снова облучают, добиваясь в конце концов нужных результатов.
С. И. Алиханян с сотрудниками вывел новые расы грибков, которые изготовляют антибиотики (террамицин и эритромицин) в 5—10 раз больше, чем исходные образцы. А всего за время использования антибиотиков в медицине производительность грибков удалось повысить в тысячи раз, а стоимость производства — значительно снизить. Так мутагенные свойства ультрафиолетовых лучей используются для селекции одноклеточных организмов и некоторых растений.
Нарушения, вносимые квантами ультрафиолетовых лучей в структуру молекул ДНК, могут быть различны. Если происходит замена одного пиримидинового основания другим (например, тимина — цитозином или урацилом) или пурина — пурином (аденина — гуанином и наоборот), то такие ошибки — их называют транзициями — не нарушают конфигурации молекулы ДНК; обычно они не распознаются и не устраняются восстановительными системами клетки (о них идет речь в главе V). Другой тип мутации — трансверсии, в которых происходит замена пурина пиримидином и наоборот, довольно заметно искажают скелет молекулы и обычно устраняются раньше, чем клетка успевает передать ошибочную информацию потомкам. Наконец, третий тип мутаций — выпадение (делеция) или вставка одного или нескольких азотистых оснований.
Каковы возможные последствия мутаций рассмотренных типов? Так как триплет азотистых оснований в молекуле ДНК соответствует одной аминокислоте в структуре кодируемого белка, то замена одного азотистого основания другим в ДНК (мутации первого и второго типов) означает замену аминокислоты; это может отразиться на функции будущего белка в клетке и даже на течении определенных обменных реакций. Мутации третьего типа могут давать гораздо более серьезные последствия: выпадение или вставка основания изменяет весь шифр, так как сдвигается граница между триплетами, и структура кодируемого белка очень сильно искажается.
Мутации возникают и при поедании корма, облученного короткими ультрафиолетовыми лучами, в котором в результате облучения образуются, очевидно, химические мутагены.
Мутации, возникающие в клетках тела многоклеточных животных, не могут оказать влияния на наследственность всего организма или его потомков. Их влияние распространяется лишь на потомство самой облученной клетки. Но иногда, при каких-то невыясненных еще полностью условиях, перерождение клетки может зайти так далеко, что она превратится в раковую. Длительное воздействие солнечного света или ультрафиолетовых лучей искусственных источников в больших дозах вызывает образование злокачественных опухолей у подопытных животных (мышей, крыс) на участках кожи, не защищенных шерстью: на носу, ушах, хвосте. После облучения роговой слой кожи утолщается, и чтобы вызвать образование опухоли, нужно начинать с большой дозы лучей и постепенно ее увеличивать.