До сих пор мы рассматривали только один физический механизм излучения квантов света: скачкообразный возврат возбужденного (т. е. обладающего избыточной энергией) электрона в основное, невозбужденное состояние. Избыточная энергия высвечивается при этом в виде кванта излучения, величина которого точно соответствует разности энергетических уровней (возбужденного и основного). Но есть, оказывается, еще один способ высвечивания — так называемое вынужденное, или стимулированное излучение, принципиальную возможность которого еще в 1905—1917 гг. предсказал Эйнштейн. Сущность этого явления, лежащего в основе лазерного излучения, состоит в следующем.
Возбужденный электрон нередко растрачивает некоторую часть своей избыточной энергии в виде мелких квантов инфракрасного излучения, соответствующих энергетическим уровням колебания и вращения атомных ядер. При этом возбужденный электрон переходит на промежуточный метастабильный (триплетный) уровень возбуждения. Чтобы вернуться в исходное основное состояние, электрон, угодивший в триплетную «яму», должен проделать довольно сложный путь: сначала вернуться на главный (синглетный) возбужденный уровень,— а для этого нужно приобрести растраченную ранее энергию,— и затем скачком возвратиться на невозбужденный уровень, отдав избыточную энергию в виде кванта излучения. Таков «обычный», уже знакомый нам механизм.
Но электрон, пребывающий на метастабильном уровне, т. е. в состоянии неустойчивого равновесия, может столкнуть также квант света, пролетающий мимо, если он обладает энергией, точно соответствующей разнице энергий метастабильного и основного уровней атома. Мы встречаемся здесь вновь с разновидностью явления электронного резонанса. В результате вынужденной разрядки метастабильного возбужденного состояния электрон возвращается в невозбужденное, основное состояние, а вместо одного кванта мы имеем два кванта, обладающие одинаковой энергией, длиной волны (а значит, и частотой) и, что самое удивительное, одинаковой фазой колебаний (см. рис. 20), и распространяющиеся в одном направлении.
Свет — это диалектическое единство прерывности и непрерывности, корпускулярных и волновых свойств. В обычных температурных источниках света возникающие фотоны движутся хаотически, освобождаются несинхронно и отличаются определенным, более или менее выраженным, статистическим распределением частот и длин волн. Поэтому излучение обычных источников (в том числе и Солнца) полихроматично, ибо содержит всегда довольно широкий набор длин волн — «разноцветное» свечение; оно некогерентно, так как каждый квант излучается как бы сам по себе, вне связи с другими, и распространяется поэтому непараллельно с другими квантами и не в одной с ними фазе колебаний.
Стимулированному излучению присущи совершенно новые свойства. Вследствие явления резонанса квант «вынуждающий» и квант «вынужденный» имеют одинаковую (или, строго говоря, очень близкую) энергию, длину волны и частоту колебаний. Лазерное излучение поэтому в высокой степени монохроматично. Конечно, и в свете обычных источников можно искусственно выделить интересующую нас узкую спектральную область, если, например, луч Солнца с помощью мощной призмы развернуть в полосу спектра и затем весь спектр, кроме избранной узкой полосы, экранировать и поглотить. Но какую бы узкую часть спектра мы ни старались выделить, она будет содержать лучи с несколькими различными частотами и длинами волн. Кроме того, по мере повышения монохроматичности пучка лучей интенсивность его резко падает, вплоть до ничтожной величины.
Принципиальная особенность вынужденного излучения, первая, но не единственная, и состоит в том, что практически все стимулированное свечение относится к очень узкому интервалу частот. Монохроматичность новых источников света несравненно выше всего, что можно было получить до создания лазеров.
Кстати, слово лазер (LASER) происходит от первых букв слов английской фразы Light Amplification by Stimulated Emission of Radiafion (что можно перевести как усиление света путем вынужденного испускания излучения).
Вторая, не менее удивительная особенность стимулированного излучения — пространственная и временная когерентность. Квант, столкнувший электрон с уровня возбуждения, и квант, возникший при этом соскоке, имеют не только одинаковую величину. Они и двигаются в одном направлении, распространяясь в пространстве параллельно; и волновые колебания, сопутствующие их движению, совершаются синхронно во времени, однофазно. Выделить в потоке солнечного света или излучения искусственных источников когерентную часть — еще более сложно, чем с помощью монохроматора выделить узкий спектральный пучок. Поэтому явление когерентности света физики и оптики стали изучать практически только после открытия лазеров. Эти кардинальные особенности лазерного излучения сделали возможным появление еще целого ряда удивительных свойств нового вида свечения.