Выбрать главу

Во-вторых, препятствием для дальней лазерной связи является кривизна земной поверхности. Длинные радиоволны преодолевают это препятствие за счет дифракции, короткие — отражаясь от ионосферы. Лазерный луч — световой, и он распространяется строго прямолинейно, т. е. в пределах видимости. Это препятствие можно преодолеть, лишь пользуясь одним из двух названных выше способов.

Что касается существующих типов лазеров, то импульсные (твердотельные и жидкостные) установки не годятся для связи — импульсный сигнал труднее модулировать, «нагружать» информацией. У полупроводниковых лазеров область излучаемых частот слишком широка. Газовые лазеры хороши, но мощность их пока невелика. Таким образом, предстоит еще немалый путь, чтобы принципиальную возможность воплотить в реальное техническое решение. Но путь тот будет пройден — сомнений в этом нет. Уже в ближайшие годы возможно создание лазерных систем связи между искусственными спутниками земли, космическими кораблями и орбитальными станциями, а также между самолетами, летящими на большой высоте. А существующие экспериментальные системы уже сейчас обеспечивают связь в пределах примерно полутора десятков километров.

Ведутся работы и над конструкциями лазерного телевизора. Японские ученые, особенно интенсивно работающие в этой области, нашли, что вместо электронно-лучевой трубки — самой громоздкой части современного телевизора — можно использовать кристалл двуокиси теллура, модулируя отклонение светового луча путем воздействия ультразвуковых колебаний, изменяющих показатель преломления кристалла. Японская фирма «Хитати» уже демонстрировала в г. Осака на всемирной выставке «Экспо-70» экспериментальную систему цветного телевидения, в которой проекция на огромный экран (3X4 м) осуществляется с помощью трех лазеров — криптонового (красного) и двух аргоновых (зеленого и синего). Видеосигналы передаются от обычной цветной телекамеры, усиливаются и модулируют лазерные сигналы. Благодаря применению лазеров цветовая передача изображения резко улучшается. Горизонтальная и вертикальная развертка обеспечивается системой из 40 зеркал.

Другая важная область практического использования лазерного излучения — производство точных и прецизионных измерений: расстояния до Луны (с помощью установленного на Луне отражателя точность повышена до 50 м), дрейфа континентов (с помощью отражателей и специального спутника), движения ледников, толщины облачности, для геодезических измерений, определения расстояния до цели. Луч лазера может быть использован и для обнаружения пожаров — дым и токи нагретого воздуха способны слегка отклонять его траекторию. Установка лазера в сейсмоопасном месте (на коренных породах) может облегчить предсказание землетрясений — по отклонению пятикилометрового луча. Наконец, лазерный визир используется при прокладке трубопроводов через водохранилища и реки, при бурении тоннелей и скважин. Лазерный визир использовался и при строительстве Останкинской телебашни — для своевременного выявления отклонений от вертикальной линии.

Специалистами широко обсуждаются перспективы передачи энергии на большие расстояния с помощью лазерного луча. В качестве световодов испытываются стеклянные волокна с полированной зеркальной поверхностью (волоконная оптика) и кварцевые трубки, заполненное четыреххлористым этиленом. Но потери энергии в таких световодах довольно значительны. Реальна также опасность их разрушения поглощенным светом. Передача же без световодов принципиально возможна главным образом за пределами плотных слоев атмосферы.

В военном деле лазерный луч используется для обнаружения и уничтожения самолетов и ракет противника, в системах наведения и самонаведения на цель ракет, бомб, снарядов, для скрытого ведения воздушной разведки в ночное время, аэрофотосъемки (инфракрасный лазер). Лазер может быть деталью дистанционного взрывателя и, наконец, сжигать на расстоянии военные объекты, в том числе движущиеся,— задача, привлекавшая внимание людей еще в древности и воплощенная в фантастических проектах — сначала в зеркалах Архимеда, а затем в «Гиперболоиде инженера Гарина» А. Н. Толстого.

Большое будущее, видимо, ожидает лазер еще в одной области применения: в голографии. Этот вид объемной фотографии, содержащей всю информацию о предмете («голо» — по-латыни весь), был теоретически предсказан в 1948 г. английским физиком Д. Табором. Если зафиксировать на фотопластинке дифракционную картину, возникшую при прохождении света мимо препятствия в виде точки, а затем пропустить через пластинку точно такой же пучок света, на экране вновь возникнет та же точка. Но теоретические предположения Габора осуществить было невозможно — пучок света с его хаотической структурой воспроизвести вторично не удавалось.