Так получилось, что практически одновременно с выявлением основных законов генетики в 1868 году молодым швейцарским биохимиком и физиологом Иоганном Ф.Мишером (1844 – 1895) были открыты нуклеиновые кислоты. С отнесением новых веществ к кислотам все было просто: они легко вступали в соединение с «основными» красителями, то есть обнаруживали выраженные кислотные свойства. Нуклеиновыми же они были названы только потому, что присутствовали, как правило, в клеточном ядре (от nucleos – ядро).
Этапным в развитии новой науки оказался 1912 год, когда американский биолог Томас Г. Морган (1866 – 1945) предложил теорию локализации генов в хромосомах. Он ставил свои эксперименты на мухах дрозофилах, вскоре ставших едва ли не самым популярным объектом генетических исследований. Развитая им и его школой (Г. Дж. Меллер, А. Г. Стертевант и др.) генная теория включала в себя ряд законов, дополняющих законы Менделя (гены в хромосомах сцеплены друг с другом; число возможных комбинаций между генами внутри хромосом зависит от их удаленности друг от друга; гены одной и той же хромосомы образуют связанную группу, а число этих групп не превышает число хромосомных пар). В 1933 году за разработку хромосомной теории наследственности ему была присуждена Нобелевская премия.
(Два эти имени станут у нас нарицательными, и в СССР долгое время «менделизм-морганизм» будет синонимом генетики, и ругательное отношение к ней прочно соединится с негативной оценкой этих фигур.)
В 1944 году основываясь на результатах исследований Френсиса Гриффита, проводившихся тем еще в 1928 году, американскими биохимиками Освальдом Т. Эвери, Колином М. Маклеодом, Маклином Маккарти из Рокфеллеровского института из вирулентных пневмококков была выделена дезоксирибонуклеиновая кислота (ДНК). Так было открыто и идентифицировано вещество, определяющее наследственные свойства организма.
Через 18 лет английскому биофизику Морису Х.Ф.Уилкинсу (уроженцу Новой Зеландии) на основе рентгеноструктурного анализа удалось объяснить структуру ДНК. В следующем, 1953, году американским биохимиком Джеймсом Д. Уотсоном и английским физиком Френсисом Х.К.Криком была открыта структура молекулы ДНК. Используя данные рентгеноструктурного анализа кристаллов ДНК, проведенного Уилкинсом, они предположили, что эта спираль состоит из двух полинуклеатидных цепей, и исходя из этого представления создали модель несущей наследственную информацию молекулы в виде двойной спирали. На основе модели Уотсона-Крика было разработано современное представление о принципе работы гена и заложены основы учения о передаче биологической информации.
Нуклеиновые кислоты представляют собой простую последовательность связанных между собой нуклеотидов. Каждый из них включает в себя по одной молекуле фосфорной кислоты, сахара и органического основания.
Фосфорная кислота во всех случаях одинакова, то есть каждый нуклеотид включает в себя одну и ту же молекулу.
В отличие от фосфорной кислоты, сахара представлены в двух вариантах: рибозы и дезоксирибозы. Эти два сахара никогда не встречаются одновременно в одном и том же полинуклеатиде, то есть в одной и той же цепочке нуклеотидов. И если мы обозначим эти сахара их начальными буквами Р (рибоза) и Д (дезоксирибоза), то получим известные сегодня, наверное, каждому аббревиатуры нуклеиновых кислот (НК): РНК и ДНК.
Основания так же отличаются друг от друга. Но здесь отличий больше. В состав ДНК входит четыре их разновидности: аденин (А), гуанин (Г), цитозин (Ц) и тимин (Т); в состав РНК входят три из них: аденин, гуанин, цитозин, но вместо тимина появляется урацил (У).
Таким образом, с позиций структурной химии ДНК представляет собой последовательность связанных между собой дезоксирибонуклеатидов, РКН – последовательность рибонуклеатидов. Словом, не очень сложное образование, но при этом общая длина нуклеатидных цепей может достигать нескольких миллионов звеньев.
В этих молекулярных цепочках каждые три следующие друг за другом основания составляют собой так называемый триплет. Триплетная компоновка одним из первых в 1954 году была предложена Джорджем (Георгием Антоновичем) Гамовым, американским физиком, выходцем из России. Число различных сочетаний из 4 нуклеотидов по два составило бы 42 = 16, что недостаточно для кодирования 20 аминокислот, в то время как число сочетаний по три – 64 (43 = 64)[25].
Каждый триплет имеет своим назначением кодировать какую-то определенную аминокислоту. Другими словами, каждый триплет служит сигналом к включению в состав синтезируемой белковой молекулы строго определенной аминокислоты. Так, например, триплет ГАУ кодирует собой аспарагиновую кислоту, ГЦУ – аланин, ЦЦУ – пролин, УУУ – фенилаланин. Поэтому последовательность ГАУ – ГЦУ – ЦЦУ – УУУ означает собой род жесткой инструкции, согласно которой нужно сначала взять аспарагиновую кислоту, затем подключить к ней аланин, далее – пролин и, наконец, фенилаланин.
Приведем так называемый генетический «словарь»:
Примечание: «Нет» означает, что кодон не кодирует никаких аминокислот; такие кодоны называются бессмысленными.
Собственно, именно в жестком соответствии между триплетами и аминокислотами, которые они кодируют, и состоит связь между нуклеиновыми кислотами и белковым синтезом. Это соответствие было установлено опытным путем: к разрушенным клеткам добавляли синтетические полинуклеотиды известного состава и смотрели, какие аминокислоты включаются в белки. Позднее появилась возможность прямо сравнить последовательности аминокислот в вирусных белках и оснований в вирусных нуклеиновых кислотах. При этом чрезвычайно интересно отметить, что генетический код, за редкими исключениями, одинаков для всех организмов – от вирусов до человека.[26]
Таким образом, можно заключить, что триплет предстает как дискретный сигнал, как некоторая информационная единица, кодовое слово. Иначе – кодон. Всего лишь посредством четырех различных знаков, которые представляют собой молекулы четырех весьма схожих органических соединений, «записана» вся информация о строении биологического организма любого уровня сложности. Все что требуется, – это выстроить их в нужной последовательности.
Казалось бы, всего четыре знака для кодирования того бесконечного многообразия, из которого складывается живая природа, – это очень мало. Но вспомним, еще меньшим числом – всего тремя знаками (точка, тире, пробел) можно кодировать все буквы русского (впрочем, не только русского, но и любого вообще) алфавита, а уже с их помощью – полное содержание всех библиотек и музеев мира.
Однако мы уже могли видеть, что там, где начинается жизнь, вступают в действие более чем астрономические величины: так, например, цепочка, состоящая всего из 50 триплетов дает 2*1090 вариантов. Поэтому ясно, что даже такая коротенькая последовательность сама по себе, случайно, сформироваться не может. Тем более нечего думать о последовательностях, которые включают в себя миллионы самостоятельных звеньев.
Но если невозможна чисто случайная полимеризация, то, может быть, существуют механизмы, позволяющие автоматически отсекать какие-то заведомо неприемлемые варианты. Нельзя ли предположить, что при соблюдении некоторых условий упорядоченные последовательности нуклеотидов начинают формироваться совсем не случайно, что определенным вариантам начинает отдаваться предпочтение?
Эта проблема была сформулирована практически сразу же после расшифровки генетического кода и механизма матричного синтеза белка. Поэтому уже в шестидесятых годах нашего столетия были предложены математические модели (разумеется, очень упрощенные) таких механизмов.
26
Одно из таких исключений составляют изменения в генетическом коде, используемом митохондриями. Митохондрии – это небольшие автономные субклеточные частицы (органеллы), присутствующие во всех клетках, кроме бактерий и зрелых эритроцитов. Предполагают, что когда-то митохондрии были самостоятельными организмами; проникнув в клетки, они со временем стали их неотъемлемой частью, но сохранили некоторое количество собственной ДНК и синтезируют несколько митохондриальных белков.