Выбрать главу

Способность молекул РНК одновременно служить катализатором химических реакций и носителем информации позволяют выдвинуть гипотезу о том, что РНК и была первым сложным полимером, появившимся в процессе добиологической эволюции. Эта гипотеза получила название «гипотеза РНК-мира».[19-21] Согласно ей, РНК на первых этапах эволюции автокатализировала синтез других молекул РНК, а затем и ДНК. В отличие от РНК, молекулы ДНК обладают более сильными водородными связями, способными удерживать на своей нити комплементарную ей другую нить, которая, по сути, нейтрализует катализирующие способности одиночной ДНК. Образно говоря, двойная спиральная нить ДНК вносит систематизирующий порядок, обеспечивая долговременную устойчивость генетической информации.

Следующей важной особенностью молекул РНК является то, что их короткие полимерные образования, включающие тройную комбинацию из четырех возможных оснований, могут образовывать комплементарную связь с одной из 22 возможных аминокислот. Это свойство обеспечивает избирательную выборку определенных молекул аминокислот из их смеси в форме комплекса РНК – аминокислота. С другой стороны, такие РНК с присоединенной аминокислотой, называемые транспортными РНК, продолжают сохранять способность к установлению комплементарной связи с определенными участками более длинной РНК, называемой матричной. Это обеспечивает выстраивание на матричной РНК аминокислот в определенной последовательности. Если увешанная гроздьями аминокислот РНК возбуждается (приобретет электрон), то энергия этого электрона расходуется на установление валентных связей между соседними аминокислотами. Другими словами, возбужденная матричная РНК выступает в роли катализатора полимеризации аминокислот.

Как уже отмечалось, поступление и продвижение электронов по молекуле РНК осуществляется пошагово, поэтому и процесс полимеризации аминокислот на матричной РНК осуществляется последовательно и упорядоченно, что обеспечивает не только синтез полимерной аминокислоты, но и перенос на нее генетической информации с матричной РНК.

Из изложенного следует, что одним из условий синтеза полимерной аминокислоты (белка) на РНК является наличие постоянной энергетической подпитки этого нуклеидного полимера. В современных биосистемах такая подпитка осуществляется либо с помощью мембранных комплексов, создающих и поддерживающих разность потенциалов за счет различной концентрации ионов металлов по разные стороны от мембраны, либо с помощью так называемых, полимераз – длинных белковых нитей, связывающих в различных своих частях ионы металлов и обеспечивающих тем самым необходимый биопотенциал для энергетической подпитки процесса полимеризации. Очевидно, что полимеразы – это более поздняя наработка природы в процессе эволюции живых систем. На первых порах синтез белков осуществлялся преимущественно на мембранных структурах.

       Синтез белка на матрице РНК расширил свойства добиологических систем, постепенно белок заменил РНК в структурных аспектах.

Белки – качественно новые химические соединения, которые вносят в микромир совершенно новые свойства, а также зависимость ее свойств от значений рН. Изоэлектрической точкой аминокислоты называют значение рН, при котором максимальная доля молекул аминокислоты обладает нулевым зарядом. При таком рН аминокислота наименее подвижна в электрическом поле, что позволяет использовать данное свойство для разделения аминокислот, а также белков и пептидов.

Цвиттер-ионом называют молекулу аминокислоты, в которой аминогруппа представлена в виде – NH3+, а карбоксигруппа – в виде – COO. Такая молекула обладает значительным дипольным моментом при нулевом суммарном заряде. Именно из таких молекул построены кристаллы большинства аминокислот. Эта особенность белков позволяет им из окружающей субстанции извлекать определенные химические соединения, упорядочивать их и утилизировать поступающую извне энергию в новое химическое соединение. К другим важным свойствам белков относится то, что они, взаимодействуя с ионами металла, создают уникальные катализирующие центры (ферменты) для многих биологических соединений; создают проводящие пути для ионов металла и органических соединений через мембраны; выступают универсальным строительным материалом в структуре клетки; являются основой сократительных молекул; образуют рецепторы клетки; используются как химические соединения для «обмена информацией» между клетками.