О малых начальных размерах Вселенной действительно можно говорить, если подразумевать под ними не ее размер в момент горячего Большого взрыва или после него, но размер раздувающегося пузыря нашей локальной Вселенной (или какой-нибудь другой), в рамках инфляционной космологии, имея в виду период от возникновения квантовой флуктуации ДО момента горячего Большого взрыва. Здесь размер пузыря действительно может (хотя и не обязан) меняться от микроскопического в момент начала раздувания, до чудовищного в момент разогрева Вселенной в Большом взрыве (он может пройти и через размер атома, который, однако, в этом сценарии ничем не выделен, и не означает перехода от квантовой стадии эволюции к классической). Если уж говорить о малом начальном размере Вселенной, то надо четко обозначать, что это понятие, во-первых, имеет отношение к истории Вселенной ДО горячего Большого взрыва — к квантовому рождению и последующей инфляционной стадии; во-вторых, надо понимать, что вопрос о размере начальной квантовой флуктуации пока неясен; и, в-третьих, не следует забывать, что есть космологические сценарии (бранные), в которых вообще нет никакого квантового рождения Вселенной из флуктуации и нет малых размеров чего-либо, связанного с этим событием. Часто все эти тонкости опускаются, что вводит читателей в заблуждение.
** «Этот вывод меняет представление о сингулярном состоянии Вселенной непосредственно в момент Большого взрыва».
Инфляционная космология, как и бранная, вообще говоря, не содержит представлений о сингулярном состоянии Вселенной ни в момент горячего Большого взрыва, ни когда бы то ни было до него. Никакой неизбежной сингулярности в современной, но неквантово-гравитационной, космологии нет. И в инфляционной, и в бранной космологии Вселенная в момент горячего взрыва очень велика и обладает конечной плотностью и температурой (которая в инфляционной космологии определяется плотностью энергии поля инфлатона на момент фазового перехода). Начальная сингулярность инфляционного периода (до горячего Большого взрыва! см. предыдущее примечание) в большинстве инфляционных сценариев явно устраняется началом расширения Вселенной из предполагаемой квантовой флуктуации скалярного поля инфлатона, которая имеет конечный размер, и для описания которой, вообще говоря, квантовая гравитация может и не потребоваться (это обычная квантовая флуктуация поля вроде той, которая определяет наблюдаемый эффект Казимира). По этому поводу А. Линде написал1: «В этом отношении инфляционная космология обладает очень важным преимуществом: она работает практически независимо от решения проблемы сингулярности. Она одинаково хорошо работает после сингулярности, после отскока, или после квантового рождения вселенной. Этот факт особенно ясен в сценарии вечной инфляции: вечная инфляция делает процессы, которые происходят в области большого взрыва
’ A. Linde. Inflationary Cosmology // Lect.Notes Phys. V. 738(2008). P. 1–54 (arXiv:0705.0164v2 [hep-th]).
практически не имеющими отношения к последующей эволюции вселенной» {перевод с англ. А.П.). Заметим, что в цитированном отрывке А. Линде понимает под большим взрывом не горячий Большой взрыв, и даже не начало инфляции нашей Вселенной, но начало первого в Мультиверсе инфляционного расширения (если таковое вообще было, по поводу чего Линде в цитированном обзоре высказывает сомнение), с которого все началось, или даже начало самого Мультиверса — начало процесса вечной инфляции. То, что есть необходимость в начале Мультиверса — тоже, как считает Линде, сомнительно.
Представление о сингулярности содержит классическая фридмановская космология (и другие классические космологии), что делает классические решения расходящимися. В этом состоит классическая проблема сингулярности в космологии. Теория струн вместе с ПТКГ показывают, что даже из идеализированного классического сценария (который игнорирует проблему происхождения горячего Большого взрыва) можно устранить сингулярность благодаря эффектам квантовой гравитации. Точное утверждение состоит в том, что из-за эффектов квантовой гравитации перестает работать теорема Пенроуза о сингулярности. Целью анализа космологической сингулярности в квантовых теориях гравитации является не столько вопрос о том, как на самом деле Вселенная решает проблему сингулярности, сколько более формальный вопрос о том, не являются ли решения ОТО противоречивыми, и является ли сингулярность в решениях ОТО неизбежной. В литературе иногда перемешивается одно с другим (устранение сингулярности в инфляционном сценарии и в космологии вообще и устранение сингулярности из классических решений ОТО), что порождает путаницу. Эта путаница присутствует, например, у Б. Грина в «Элегантной Вселенной»[265]: «…для исключения бесконечной температуры и плотности энергии, которые возникают в стандартной и инфляционной модели….» (стр. 234). В действительности, в стандартной модели бесконечная температура и плотность энергии возникают, а в инфляционной — нет. Этой неточности уже нет в новой книге Б. Грина «Ткань космоса»[266].
Другим выражением путаницы является то, что некоторые авторы, работающие в области квантовой космологии и квантовой гравитации, то ли не очень понимают, то ли сознательно игнорируют, что в инфляционной космологии проблема сингулярности не встает. Так Мартин Боджовальд в обзоре «Петлевая квантовая космология»[267] так представляет задачу квантовой гравитации в космологии: «Ожидается, что квантовая гравитация будет необходима для понимания ситуации в случаях, когда классическая общая теория относительности терпит неудачу. В частности, в космологии приходится иметь дело с начальными сингулярностями, иначе говоря, с тем фактом, что обратная эволюция классического пространства-времени неизбежно приходит к концу за конечное собственное время. Это представляет собой крах классической картины и требует для описания расширенной теории» (перевод с английского А.П.). То, что в инфляционной космологии проблема сингулярности вообще говоря не встает, Мартин Боджовальд не отмечает, вместо этого он настаивает на использовании расширенной теории (квантовой гравитации), и, более того, среди 314 литературных ссылок в цитированном обзоре нет ни одной ссылки на ставшие уже классическими статьи по инфляционной космологии (что по меньшей мере странно для фундаментального обзора по космологии).
Эта путаница еще более усиливается из-за того, что формальное решение проблемы космологической сингулярности с использованием квантовой гравитации приносит неожиданный бонус: оказывается, что некоторые теории квантовой гравитации (в частности, петлевая гравитация) не только устраняют сингулярность, но могут описать и некоторые варианты процесса инфляции, в которой инфляция имеет чисто квантово-гравитационное происхождение2. То есть, естественное устранение проблемы сингулярности в теориях инфляции не следует путать с тем, что некоторые квантовые теории гравитации способны формально (т. е. независимо от проблемы происхождения горячего Большого взрыва) устранить сингулярность из классических космологических решений, и при этом еще предложить квантово-гравитационную модель инфляции.
А. Д. Панов
ВЕРОЯТНОСТНАЯ ИНТЕРПРЕТАЦИЯ АНТРОПНОГО ПРИНЦИПА И МУЛЬТИВЕРС1
1. Антропный принцип и уникальность Вселенной
Почему условия на Земле пригодны для жизни? Такой вопрос кажется лишенным смысла, так как ответ на него очевиден: если бы на Земле условия не были пригодными для жизни, мы бы здесь не жили. Этот нехитрый ответ подразумевает, что существуют и другие планеты, на которых условия могут быть совсем другими, в том числе и вовсе не пригодными для жизни.
Однако, аналогичный вопрос в отношении всей нашей Вселенной более чем уместен. Это связано с пониманием двух вещей. С одной стороны, Вселенная могла бы быть устроена совсем по-другому — так, что никакая жизнь в ней была бы невозможна. Фундаментальные физические постоянные (или начальные условия при образовании Вселенной) имеют до такой степени специальные значения, как будто они намеренно подобраны так, чтобы во Вселенной могли образоваться сложные формы материи[268]. С другой стороны, в отличие от множества известных планет (в настоящее время около трех сотен), нам известна только одна Вселенная. Это обстоятельство порождает попытки искать ответ на вопрос о столь выделенных свойствах Вселенной, что в ней может существовать жизнь и разум, в совершенно различных направлениях.