Биохимик Хаим Вейцман, еврей из России, ставший впоследствии первым президентом Израиля, исследовал в то время в Манчестере продукты ферментации. Они с Резерфордом стали добрыми друзьями. «Моложавый, энергичный, шумный, – вспоминал Вейцман, – он был похож на кого угодно, только не на ученого. Он охотно и напористо разглагольствовал на любую тему на свете, зачастую не зная о ней ничего. Когда я шел в столовую на обед, я слышал, как по коридору раскатывается его громкий, дружелюбный голос». Вейцман считал, что Резерфорд совершенно не разбирается в политике, но не винил его в этом, потому что все его время занимала важная научная работа. «Он был человеком добродушным, но терпеть не мог глупости»[194].
В сентябре 1907 года, во время своего первого семестра в Манчестере, Резерфорд составил список возможных тем для исследований. Седьмым пунктом в этом списке шло «Рассеяние альфа-лучей»[195]. Проработав несколько лет над определением сущности альфа-лучей, он смог оценить их достоинства в качестве инструмента для изучения атома; альфа-частицы были массивными по сравнению с практически невесомыми бета-частицами, то есть электронами, хотя последние и обладали более высокой энергией, и активно взаимодействовали с материей. Измерение таких взаимодействий могло дать информацию о строении атома. «Меня учили считать атом этаким симпатичным твердым объектом, красного или серого цвета, кому как нравится»[196], – сказал однажды Резерфорд, выступая на банкете. К 1907 году ему стало ясно, что атом – это вовсе не твердый объект, а по большей части пустое пространство. Немецкий физик Филипп Ленард продемонстрировал это еще в 1903 году, бомбардируя разные элементы катодными лучами[197]. Ленард описал свои результаты яркой метафорой: пространство, которое занимает кубический метр твердой платины, говорил он, так же пусто, как и межзвездное пространство за пределами Земли.
Но если в атомах содержалось пустое пространство – пустота внутри пустоты, – было в них и нечто другое. В 1906 году, работая в Университете Макгилла, Резерфорд изучал магнитное отклонение альфа-частиц, проводя их сквозь узкую формующую щель и пропуская получившийся тонкий пучок через магнитное поле. В одном из опытов он закрыл половину формующей щели листом слюды толщиной всего около трех тысячных сантиметра, то есть достаточно тонким для пропускания альфа-частиц. Регистрируя результаты опыта на фотобумаге, он обнаружил, что краевые участки пучка, пропущенного сквозь слюду, оказались размытыми. Это означало, что во время прохождения альфа-частиц атомы слюды рассеивают многие из них – то есть отклоняют их от прямолинейной траектории на углы, достигающие 2°. Поскольку сильное магнитное поле рассеивало альфа-частицы, не прошедшие сквозь слюду, лишь немногим больше, тут явно происходило нечто необычное. Для такой массивной частицы, как альфа, летящей со столь высокой скоростью, отклонение на 2° было огромным. Резерфорд подсчитал, что для такого отклонения альфа-частиц требуется электрическое поле порядка 100 миллионов вольт на сантиметр слюды[198]. «Такой результат ясно показывает, – писал он, – что атомы вещества должны быть теми областями, где действуют очень интенсивные электрические силы, – вывод, который находится в согласии с электронной теорией вещества»[199][200]. Именно это рассеяние он и внес в свой список предметов для исследования.
Для этого ему нужно было не только подсчитывать, но и видеть отдельные альфа-частицы. Уже в Манчестере он начал работу по совершенствованию необходимых для этого приборов. Вместе с Хансом Гейгером они стали разрабатывать электрическое устройство, которое отмечало бы прибытие каждой отдельной альфа-частицы в счетную камеру. Впоследствии Гейгер усовершенствовал это изобретение, получив знакомый нам счетчик Гейгера, который используется в современных исследованиях радиации.
Отдельные альфа-частицы можно было сделать видимыми при помощи сульфида цинка – вещества, использованного для покрытия пробирок с раствором радия, которые Пьер Кюри принес в ночной парижский сад в 1903 году. Если взять маленькую стеклянную пластинку, покрытую сульфидом цинка, и бомбардировать ее альфа-частицами, в каждой ее точке, в которую попадает частица, на короткое время возникает флуоресценция. Это явление называют «сцинтилляцией», от латинского слова scintilla, то есть «искра». При помощи микроскопа можно различить и подсчитать отдельные слабые сцинтилляционные вспышки сульфида цинка. Этот метод был чрезвычайно трудоемким и утомительным. Экспериментаторы должны были провести по меньшей мере тридцать минут в темной комнате, чтобы их глаза привыкли к темноте, а затем по очереди подсчитывать вспышки в течение минуты каждый, меняясь по звонку таймера[201], – потому что дольше этого пристально рассматривать маленький темный экран было невозможно. Даже в микроскоп вспышки были еле-еле заметны, и наблюдатель, ожидавший возникновения определенного числа вспышек, иногда мог непреднамеренно видеть вспышки воображаемые. Таким образом, было неясно, насколько точным такой подсчет вообще может быть. Резерфорд и Гейгер сравнили результаты такого визуального подсчета с соответствующими данными электрического счетчика. Когда выяснилось, что наблюдатели обеспечивают достаточно точный подсчет, от электрического счетчика отказались. Он мог подсчитывать частицы, но не позволял их увидеть, а Резерфорда прежде всего интересовало определение положения альфа-частиц в пространстве.
199