Выбрать главу

Дальнейшее изучение свойств платиноидов еще более расширит области применения этих ценнейших металлов.

В общем, потребности в этом и других металлах не снижаются, а возрастают. И все же... говоря о металлах как необходимейших материалах наших дней, перечисляя их многочисленные достоинства, проявляющиеся в разных областях науки и народного хозяйства, я пока лишь походя упомянул самое-самое, как говорится, их новое качество. Они все чаще становятся основой композиционных материалов, создание которых обязано актуальнейшим потребностям техники и науки. Им металлы и передают своп достоинства, свои качества, характеризуя которые люди испокон веков употребляли определение - "самый".

Мы вас ждем...

"...Что ни шаг. то встреча с полимерами. Выбежал в магазин за хлебом в руках полиэтиленовый пар;ет, сунул соску малышу - резина и пластмасса. А чем записать урок, лекцию, сделать домашнее задание? Конечно, пластмассовой шариковой ручкой. И если внимательно послютришь вокруг или хотя бы изучишь содержимое своего портфеля и сам портфель, то убедишься: без полимерных материалов сегодня - никуда. Или, может быть, недостаточно доказательств?

Сегодня многие хотят похудеть. И не только люди.

Избавляются от лишнего веса самолеты и автомашины, станки и приборы, радио- и телеприемники и пр.

И здесь основательно помогают полимеры. Загляните в автомобиль: отделка салона - полиуретаны, штурвал - этролы на основе ацетобутирата целлюлозы, лобовое стекло - безосколочный триплекс (многослойное силикатное стекло с промежуточным слоем из поливинилбутираля).

Не за горами и полностью полимерный автомобиль с керамическим двигателем, одним из создателей которого может быть кто-нибудь из нынешних юных химиков.

С самолетами сложнее - здесь к полимерным материалам требования жестче из-за большего перепада температур, больших механических нагрузок. Тем не менее нашлись полимерные материалы и для самолетостроения.

Например, полиимиды, сохраняющие свои физико-химические свойства в интервале от - 270 до + 300 градусов Цельсия. Полиимидные пенопласты отличная высокотемпературная звукоизоляции в реактивных двигателях.

Создана и электропроводящая пластмасса на основе полиацетилена и полиамида. В недалеком будущем познакомимся с ней поближе, когда на смену батареям центрального отопления придут тонкие ворсистые ковры-пластики, которые можно будет положить на пол или повесить на стену.

А как вы посмотрите на яблоко размером с голову человека и на виноград величиной со сливу? С удивлением и недоверием. Удивляться здесь надо искусству ученых и инженеров-полимерщиков, создавших биологически активные полимеры - стимуляторы роста.

Еще один пример - полимерные мембраны. Если в диффузорный газоразделительный аппарат установить селективную полимерную мембрану, то можно выделить из природного газа, содержащего 0,45 процента гелия, газовую смесь, состоящую из гелия на 70 процентов.

Обо всем и не расскажешь, хотя интересного очень много: искусственное сердце и почка, кровезаменители, сосуды и контактные линзы, съедобная упаковка, элементеорганические полимеры, содержащие кремний, фосфор, алюминий, титан и потому обладающие уникальными свойствами, современные процессы нанесения лакокрасочных покрытий на полимерной основе, где используют бомбардировку ускоренными электронами, лазерное и ионизирующее излучение, электроосаждение, электростатическое поле и тлеющий разряд.

Но главное - заменить дефицитное природное сырье полимерными материалами. Уже сейчас созданы материалы, заменяющие металлы и даже превосходящие их по некоторым свойствам. А синтетические ткани из полиэфирных и других полимерных волокон? Причем каждое новое волокно по своим свойствам все ближе к своим природным аналогам - дефицитным шерсти, хлопку и шелку и даже нередко превосходит их. Так что "за полимерами будущее" сказано не ради красного словца.

Впереди непочатый край работы для конструкторов, инженеров, ученых и руководителей производств - выпускников полимерного факультета МХТИ имени Д. И. Менделеева. Если хотите работать на переднем крае науки и техники в неисчерпаемом и увлекательном мире полимерных материалов, приходите к нам учиться.

Мы вас ждем".

Эта небольшая корреспонденция декана полимерного факультета МХТИ доктора химических наук Г. М. Цейтлина, опубликованная в одном из номеров журнала "Химия и жизнь", обратила на себя мое внимание сразу по нескольким причинам. Во-первых, появилась она в разделе "химические профессии". А знакомство молодежи с делом, которое может оказаться единственным на всю жизнь, чрезвычайно важно и ответственно. Не знаю, как другие публикации этой рубрики, но та, что мне попалась на глаза, написана и по-деловому, и достаточно занимательно. Одним словом, так, как может и должен писать об этом человек, по-настоящему любящий свое дело. А, во-вторых, как ни парадоксально, но именно последняя и достаточно стереотипная концовочная фраза "мы ждем вас", заставила отнестись к ней внимательно.

Суть в том, что это достаточно примелькавшееся выражение для химической науки давно трансформировалось в некий рефрен, сопровождающий ее на всем пути становления и развития. Насколько помню, мы всегда ждали специалистов на химических предприятиях и нам всегда их недоставало. "Мода" в других отраслях народного хозяйства то окружала ореолом славы специальности, особенно необходимые на данном этапе развития экономики, то довольно резко "сдергивала" их с пьедестала почета. Химикам подобных взлетов и падений, к счастью, пережить не довелось. Потому что спрос на них всегда, во все времена был достаточно высок.

А ведь в советской химии представлены все направления современной химической науки.

Разумеется, их становление происходило не параллельно, не одновременно, а по тем законам, которые определялись тенденцией развития науки вообще. Так, в последнее столетие для химии во всем мире характерен широкий размах работ по синтезу органических соединений, именно в этой области достигнуты выдающиеся успехи, превратившие органическую химию в основу изучения жизненных процессов и познания тайн жизни.

Неорганическая же химия развивалась в тот же период более медленно, главным образом, как научная основа традиционных отраслей промышленности: минеральных кислот, щелочей и солей, черной и цветной металлургии, вяжущих материалов, керамики и стекла.

И только научно-технический прогресс задал ей тот ускоренный темп, выдвинул такие научные проблемы, которые заставили очень многое переоценить и переосмыслить. Более того, именно потребности научно-технического прогресса явились стимулирующим началом создания в неорганической химии нового крупного раздела - координационной химии. А объектом исследований стали соединения, в которых можно выделить центральный атом (чаще всего аюм металла) и присоединенные к нему (координированные) лиганды: атомы, ионы, молекулы неорганической и органической природы. Причем, как правило, в этих соединениях число лигандов превышает классическую валентность центрального атома, определяемую как число неспаренных электронов в его валентной оболочке.

Возникнув на стыке двух больших областей химии - неорганической и органической, координационная химия стала полем их интеграции - процесса, прямо противоположного дифференциации, наблюдавшейся на протяжении всего предшествовавшего периода развития химической науки. Впрочем, современное развитие любой науки (химия - лишь один из примеров) характеризуется единством противоположных- тенденций - глубокой дифференциацией и специализацией, с одной стороны, и интеграцией и кооперацией различных областей знаний - с другой.

Сегодня координационная химия (или, как ее еще называют, химия комплексных соединений) - традиционное направление исследований в нашей стране. А основополагающие работы советских ученых в этой области получили широкое международное признание.

Речь идет прежде всего о развитии исследований по металлокомплексному катализу, внедрению координационных представлений в биохимию, интенсивном использовании комплексных соединений в медицине и сельском хозяйстве. Очень большое развитие получили химия редких и переходных элементов, в том числе и координационная химия этих элементов.