Построение коммунизма В. И. Ленин неразрывно связывал с резким повышением производительности труда на базе самой современной техники и неуклонным внедрением в производство всех достижений науки и техники.
"Подъем производительности труда требует, - пишет он в "Очередных задачах Советской власти", - прежде всего, обеспечения материальной основы крупной индустрии:
развития производства топлива, железа, машиностроения, химической промышленности". А в статье "Великий почин" В. И. Ленин подчеркивает, что "Производительность труда, это, в последнем счете, самое важное, самое главное для победы нового общественного строя".
Документы, воспоминания Г. М. Кржижановского, И. И. Радченко, И. М. Губкина, Л. Б. Красина, Л. Н. Мартенса и многих других ученых, партийных и хозяйственных руководителей свидетельствуют о том внимании, которое уделял Владимир Ильич в те годы увеличению добычи угля, нефти, обезвоживанию и переработке торфа, перегонке сланцев, замене пищевого сырья непищевым, металла - цементом, производству минеральных удобрений, красителей, восстановлению металлургических и химических заводов, использованию природных ресурсов Кара-Бугаза, Урала, Закавказья, Вятско-Камского района, Курской магнитной аномалии и другим проблемам развития тяжелой и, в частности, химической промышленности.
Идея осуществления социалистической индустриализации была сопряжена с преодолением неимоверных трудностей, вытекающих из технико-экономической отсталости царской России. И потому в планах индустриализации СССР взаимосвязанное развитие машиностроения, черной и цветной металлургии, химической промышленности, производства строительных материалов, добычи угля, нефти и энергетики занимали особо важное место.
Нельзя было развивать машиностроение и электрификацию без черных и цветных металлов, невозможно осуществлять химизацию сельского хозяйства и обеспечивать потребности страны в химических продуктах и материалах без мощной химической промышленности, как нереально строительство заводов, электростанций, жилых домов без цемента, кирпича, бетона.
Но для того, чтобы такое слияние и взаимопроникновение оказались возможными, фундаментальные науки должны были достичь значительных успехов. И это - главная, основная тенденция в развитии человеческих знаний, а отнюдь не особенность какой-то одной страны или отдельной области знаний.
Фундаментальные исследования именно потому и важны, что их результаты способны привести к революционному перевороту в конкретной науке или в том или ином производстве. Так, фундаментальные исследования в области синтеза аммиака Ф. Габера, В. Нернста, А. Ле-Шателье и других ученых не только дали человечеству ключ к решению наиболее острой проблемы, волновавшей исследователей в конце прошлого и начале нашего века - фиксации атмосферного азота и создания мощной азотной промышленности, но и послужили мощным стимулом для развития новых разделов физической химии (химической термодинамики и кинетики, катализа, применения высоких давлений и принципа рециркуляции в химической технологии и т. д.).
Переоценить значение этих работ для прогресса химической технологии как науки практически невозможно.
Промышленность синтетических каучуков и полимерных материалов также возникла на базе фундаментальных исследований по химии и технологии высокомолекулярных соединений, выполненных несколькими поколениями ученых.
Думаю, что нисколько не впаду в преувеличение, если скажу, что вся современная техника - детище науки.
Не зря же Д. И. Менделеев, считая главной движущей силой ученого бескорыстную страсть к познанию, не уставал повторять, что познание служит пользе, а науку рассматривал не только как сумму знаний, но и как инструмент общественного прогресса. Примеров тому - великое множество. Так, все выдающиеся открытия нашего времени и реализация их в производстве - результат взаимного влияния потребностей практики и развития науки. П. Ланжевен, например, утверждал: "Никакое чисто научное изыскание, каким бы абстрактным и "незаинтересованным" оно ни казалось, не остается без того, чтобы рано или поздно не найти своего применения:
другими словами, ни одно усилие мысли не является потерянным для действия".
Таким образом, с общественно-исторической точки зрения наука утилитарна. Но это совершенно не значит, что каждый ученый должен руководствоваться в своей деятельности одними утилитарными целями. Хотя бы потому, что исследователь не всегда может предвидеть всех возможностей практического использования своих открытий. Но всякий подлинный ученый, особенно возглавляющий большое научное подразделение, обязан руководствоваться основополагающим принципом: хотя ближайшая цель любой науки заключается в ее собственном развитии, конечная и наиболее благородная задача - познание непознанного, творческое влияние, которое она оказывает на окружающую жизнь и порядок вещей в мире, польза, которую она непосредственно приносит людям.
Именно такое понимание науки было свойственно Н. Е. Жуковскому и Л. А. Чугаеву, Н. С. Курнакову и М. В. Келдышу, И. В. Курчатову и С. П. Королеву.
Со многими из них мне посчастливилось встречаться и работать. Они были не только великими учеными, обогатившими науку фундаментальными открытиями, но и не менее замечательными организаторами целевых фундаментальных научных исследований, ставших базой, основой решения важнейших научно-технических проблем использования атомной энергии и освоения космоса.
В наши дни, когда интенсивное развитие экономики требует постоянного притока новшеств, идей, усовершенствований, именно поэтому вопросы организации, планирования и управления наукой, взаимодействия ее с производством выдвигаются на первый план.
Одна из характернейших и определяющих черт современной науки углубляющийся и расширяющийся процесс органического ее срастания с производством. Объединяясь, они и образуют материально-техническую основу общества.
Очень актуальной и современной становится проблема правильного соотношения фундаментальных исследований, вытекающих из логики развития самой науки и связанных с расширением наших знаний об окружающем мире объективных законах его развития, и чисто прикладных исследований.
Собственно говоря, интерес к этой проблеме не ослабевал с момента возникновения самой науки. Но особенно он стал острым в последнее время, когда стремительный рост промышленности, транспорта и связи, сельского хозяйства, здравоохранения требует непрерывного увеличения исследований, связанных с использованием достижений фундаментальных наук в практике.
Познание никогда не носит исчерпывающего характера, и даже самое большое и значимое сегодняшнее достижение завтра может оказаться безнадежно устаревшим.
Поэтому сложность проблемы как раз и заключается в том, что установить границу между фундаментальными и прикладными исследованиями не всегда легко.
Когда возникает, например, крупная научно-техническая проблема - будь то проблема использования атомной энергии, создание космического корабля, получения исходных веществ для полупроводников и квантовых генераторов, разработка методов опреснения морской воды или защита водоемов от вредных промышленных выбросов - всегда появляется необходимость организации комплекса фундаментальных научных исследований целевого характера, которые, как правило, приводят затем к практическому результату. Эту мысль Ф. Г. Габер, немецкий химик, решивший, как известно, фундаментальную проблему фиксации атмосферного азота, выразил, принимая Нобелевскую премию, удивительно четко: "Синтез аммиака, осуществленный в крупном масштабе, представляет собой действительный, быть может, наиболее действительный путь к удовлетворению важных народнохозяйственных нужд. Эта практическая польза не была предвзятой целью моих работ. Я не сомневался в том, что моя лабораторная работа даст не более, чем научное выяснение основ и разработку опытных методов и что к этим результатам должно быть еще много приложено, чтобы обеспечить хозяйственные достижения в промышленном масштабе.