Во времена М. В. Ломоносова вся отечественная химия со всеми ее тайнами, превращениями, трансформациями начиналась с химической лаборатории Академии наук. Здесь она творила, создавала предмет своего исследования, и ее возможности определялись гением того, по чьей воле вершились эти превращения. Сегодня дело Ломоносова продолжают сотни научных учреждений страны, десятки тысяч исследователей. И от того, как полно используют они свои возможности, зависит создание широчайшей палитры веществ и материалов, задуманных и создаваемых на благо человека; материалов, определяющих успехи интенсификации народного хозяйства.
...На высоком берегу Двины, словно далекие посланцы северных поморов, заблудившиеся в современном Архангельске, стоят по четыре в ряд добротные рубленые дома. Высоко над фундаментом сделанные окна словно глядят - не наглядятся на открывающуюся даль. Длиннющая в семь километров деревянная улица... Так и видится где-то в конце ее крепкая ломоносовская фигура, словно все еще у него впереди - жизнь, наука, будущее.
А может, так оно и есть? И все действительно впереди. Ведь эстафета принята и настойчиво идет в будущее сквозь все бури, трудности и невзгоды.
Заключение
Вот и пришла пора подвести черту под рассказом о веществах, соединениях и материалах, обязанных своим рождением химии и химической технологии. Надеюсь, что мне удалось довести до читателя его главную мысль:
технический прогресс во всех отраслях народного хозяйства без новых материалов невозможен.
Это сегодня. А что будет завтра, послезавтра, в 2000 году? Не рискуя брать на себя функции Госплана, главная задача которого - планирование на основе научного предвидения, попробую все же обрисовать наиболее очевидные перспективы отечественного материаловедения.
А они таковы.
Создание новых материалов и веществ потребует, вопервых, от химической и горнодобывающей промышленности страны уже в ближайшие годы резкого расширения сырьевой базы. По крайней мере, в ближайшие десять лет. За пределами этих сроков научное прогнозирование пока что затруднительно, ибо бурно развивающаяся промышленность может предъявить свои, пока еще непредсказуемые требования и к сырью, и к его источникам и, конечно, к самим видам материалов.
Таково положение дел не только в нашей стране, но и в мире. США, например, уже сейчас ежегодно потребляют около десяти тонн сырья и материалов на душу населения и 15 тонн энергоносителей в пересчете на уголь.
Что же касается основных видов материалов, то они, по всей видимости, особых изменений до XXI столетия не претерпят. И отечественные, и зарубежные прогнозы в данном случае однозначны, называя в качестве наиболее перспективных из них восемь классов: металлы и сплавы, энергоносители, полимеры, керамические и прочие неорганические материалы, композиционные, возобновляемые, медико-биологические и все материалы, связанные с производством, накоплением и использованием информации.
Причем успехи в производстве таких материалов больше будут зависеть от размеров капиталовложений в модернизацию оборудования и совершенствование технологии, чем от самих научных достижений. Потому что, как я уже не раз говорил на страницах этой книги, возможность управления свойствами металлов, а они по-прежнему остаются среди всех видов основной, ведущей труппой материалов, зависит от наших знаний их внутренней структуры и химического состава. А для исследований последних нужна соответствующая аппаратура, оборудование.
Обычно металлы состоят из зерен, сложенных, в свою очередь, из микроскопических кристалликов, внутри которых атомы, удаленные один от другого на определенное расстояние, расположенные в неповторимом характерном порядке, разном для разных металлов. Хотя все зерна имеют правильную кристаллическую структуру, сами они отнюдь не всегда обладают установленной формой.
Например, если при образовании сплава из жидкого металла соседние кристаллы воздействуют один на другой, форма поверхности зерна почти всегда оказывается неправильной.
Но примеси в металлах имеют тенденцию группироваться на стыках зерен, именно поэтому направленной кристаллизацией жидкого сплава можно придать структуре металла анизотропный характер - его свойства станут в разных направлениях удивительно разными. Именно такое "конструирование" металла открывает возможность машиностроителям упрочнять детали, испытывающие наибольшую нагрузку в нужных местах.
Кристаллизованные сплавы в виде единого монокристалла применяются сегодня для создания лопаток га.ювых турбин. Полное отсутствие пограничных слоев зерен в таких материалах делает их практически бездефектными, а значит и резко повышает качество турбин. Более того, чтобы надежно защитить от коррозии детали турбин, сделанных из монокристаллов, были разработаны специальные покрытия. Срок эксперимента, а первые работы в науке и технике всегда рассматриваются как опытные, подходит сегодня к концу, и достоинства предложенных к широкому внедрению сплавов не вызывают сомнения.
Таковы некоторые выводы относительно использования в будущем металлов старых надежных материалов, присущих человеческой цивилизации. Уже сегодня очевидны и заманчивые возможности высокопрочных сталей. Они повысят свои столь ценимые наукой и техникой качества за счет легирующих (то есть придающих определенные физико-химические или механические свойства) добавок, последующей прокатки и закалки.
Полученный таким образом металл имеет мелкозернистую структуру и соответственно более высокую прочность. Скажем, класс высокопрочных сталей, так называемой двойной структуры, сочетает в себе ковкость и технологичность более мягких низкоуглеродистых сталей и прочность, свойственную только высокоуглеродистой инструментальной стали.
Думаю, что на смену многим, успешно используемым сегодня в науке и технике материалам, придут и так называемые стекловидные металлы. Дело в том, что хотя обычные металлы представляют собой кристаллические структуры, некоторые сплавы обладают уникальной способностью при очень быстром охлаждении (от 100 тысяч градусов до 1 тысячи градусов Цельсия в секунду) превращаться в некристаллические, аморфные структуры.
Главным образом это материалы на основе железа, кобальта, никеля. Они способны затвердевать в стекловидной форме в виде лент шириной семь-восемь сантиметров и толщиной в доли миллиметра. Магниты из стекловидных металлов отличаются высокой механической прочностью, а энергетические потери таких материалов во время цикла намагничивания чрезвычайно низки.
Эта удивительная комбинация свойств делает стекловидные металлы серьезными конкурентами железокремниевых сплавов, используемых сегодня для производства сердечников в трансформаторах, применяющихся на лиN ниях электропередачи высокого напряжения. Американские ученые подсчитали, что переход на трансформаторные сердечники из стекловидного металла мог бы сэкономить количество электроэнергии, эквивалентное 954 миллионам литров нефти в год.
Но хотя замена всего парка ныне работающих на линиях электропередачи высокого напряжения трансформаторов из стекловидных металлов сулила бы колоссальную экономию, ни одной стране в мире подобное мероприятие сегодня не по силам: слишком уж трудоемка и дорога эта процедура. Те же американские ученые считают посильным и разумным гораздо более умеренные темпы ее осуществления: за год можно обновлять десятую часть всего установленного парка трансформаторов.
Если учесть, что стекловидные металлы отлично противостоят коррозии, то и такое вроде бы замедленное его внедрение способно окупить затраты, связанные с проведением необходимых работ.
Среди новых конструкционных материалов, все решительней меняющих судьбу и характер главнейших приоритетных направлений научно-технического прогресса, лидерами по-прежнему остаются (и, безусловно, останутся на ближайшую перспективу) титан, гафний, цирконий, ниобий, тантал, молибден, вольфрам.
Самое большое распространение на сегодняшний день получил титан. И хотя о его достоинствах и применении я уже рассказывал довольно подробно, включая и нелегкую историю открытия, должен вновь обратиться к его удивительным качествам. Дело в том, что из этого на редкость коррозионноустойчивого металла сегодня изготавливают рабочие лопатки низконапорных паровых турбин, титановые детали широко используются в химических реакторах. И он же остается неизменным лидером среди конструкционных материалов, применяемых в авиации. И хотя титан по содержанию в земной коре один из самых распространенных металлов (после алюминия, железа, магния), высочайший спрос на него на международном рынке требует серьезных напряжений всех мировых титанопроизводящих мощностей.