Выбрать главу

Была, конечно, и еще одна серьезная причина столь широкомасштабного промышленного выпуска полимеров:

использование пластмасс значительно снижало производственные издержки. Одна-единственная деталь машины, выполненная из пластмассы путем точного литья, успешно заменяла, например, несколько металлических штамповок при меньших издержках и меньшей стоимости рабочей силы.

Нужно сказать, что столь стремительно начавшееся "завоевание" пластмассами различных отраслей промышленности особенно наглядно и убедительно проявилось в автомобилестроении. Пластмассы очень быстро заменили в типичном американском легковом автомобиле многие металлические детали, составив свыше 907 килограммов от его веса, а в моделях 1985 года они еще больше вытеснили металл.

Впрочем, замена пластмассой металлических деталей - повсеместная тенденция. Автомобиль от этого только выигрывает. Он становится легче, подвижней, а себестоимость его производства значительно снижается.

Но развитие производства полимеров поставило на повестку дня вопрос о рациональном использовании нефти. Это уникальное углеводородное сырье было, есть и еще долгие десятилетия будет основным материалом, из которого получаются полимеры. Правда нефть еще используется во всем мире крайне расточительно - как топливо. О недопустимости такого отношения к невосполнимому природному сырью говорил, как всем известно, еще Д. И. Менделеев, считавший, что применять нефть в качестве топлива и горючего все равно, что топить печь ассигнациями.

По объемам материалов и готовых изделий, потребляемых современным обществом, первое место занимают неорганические материалы и неметаллы. Они же, безусловно, будут лидировать и в будущем. А наиболее типичным представителем их останется керамика, под которой (в широком смысле слова) надо понимать все неорганические неметаллические материалы, получаемые под воздействием высоких температур.

Исходное керамическое сырье - это разнородные комбинации природных силикатов, соединений кремния и кислорода с различными металлами, и окислов, сплавляющихся или спекающихся в общую массу. Цемент и кирпич, плитка облицовочная и сантехнические изделия, фарфор и посуда из него, стекло разных видов и глазурь, эмаль по металлу, абразивы и .огнеупоры все это керамика.

Но среди великого множества проблем, связанных с улучшением свойств и эффективности производственных процессов, будущее, несомненно, за разработкой и широким внедрением в практику кремнекерамических материалов.

Кремнекерамические материалы - это карбид кремния и сиалоны (названия соединений кремния, алюминия, кислорода и азота по первым буквам английских наименований этих элементов) - неорганические материалы, не встречающиеся в природе, хотя химический состав и свойства нитридов кремния очень близки по своим свойствам и составу соединениям природного кремния, что открывает заманчивейшую перспективу синтезировать большой ряд соединений типа нитрида кремния с уникальными свойствами путем замены некоторых атомов кремния и азота на атомы алюминия и кислорода.

Возможности их использования могли бы быть самыми разнообразными. И прежде всего в качестве жаропрочных конструкционных материалов, огнеупоров в оптических и электронных устройствах.

Все рабочие профессии нового материала определяются его свойствами: керамические изделия из карбида и нитрида кремния при обычных температурах прочнее и устойчивее, чем изделия из обычного типа оксидной керамики. Они исключительно стойко противостоят коррозии, эрозии и тепловым ударам.

Карбидокремниевая и нитридокремниевая керамика в недалеком будущем сможет заменить жаропрочные сплавы на основе никеля и кобальта при производстве некоторых деталей, работающих при очень высоких температурах (например, в газовых турбинах), и быть использованной в керамических теплообменниках. Такая керамика обеспечит еще более высокие температурные режимы работы, чем металлы.

Более высокие температурные режимы работы, в которых трудятся такие материалы, например, в процессах превращения энергии, позволяют добиваться высокого КПД и значительной экономии топлива. Разработка нового поколения газовых турбин тоже связана с возможностями нитридов и карбидокремниевой керамики. Представьте себе керамическую турбину, которая применяется, скажем, в качестве двигателя автомобиля. Заманчивая идея, не правда ли?

На керамические материалы обладают одной общей и весьма неприятной особенностью - они хрупки. Надежность и определенность срока службы - вот главные вопросы, которые предстоит решить создателям новых материалов. Работа над этой проблемой требует органичного объединения усилий материаловедов, конструкторов и технологов для дальнейшего усовершенствования производства новых материалов.

Разумеется, многие из названных здесь примеров перспективного использования новых материалов весьма проблематичны. Предвидения, да еще в таком деле, как научно-техническая революция, не всегда сбываются. Причин "расхождения" прогнозов и реальностей достаточно.

Думаю, что анализировать их здесь просто ни к чему.

А с примером "несостоявшихся судеб" новых материалов читателю, наверное, познакомиться все же интересно.

Тому, кто следит за политикой в области науки и техники, за тенденциями развития материаловедения у нас и за рубежом, прекрасно известно, что эпитет "металл будущего" непременно сопровождал алюминий, титан, магний, бериллий. Причем, это подразумевало значительное увеличение объемов их использования в качестве конструкционных материалов.

Но жизнь и, разумеется, научно-технический прогресс распорядились по-своему. И в качестве дешевого конструкционного материала нашел широкое распространение только алюминий. Титан и магний действительно стали металлами будущего, но благодаря своим неметаллическим формам - двуокиси титана и окиси магния. Бериллий тоже вроде бы вполне на законных основаниях дожил до звания материала будущего, но вот массовости не обрел, оставаясь очень дорогим металлом специального назначения, используемым в сплавах и конструкционных материалах для ядерных реакторов.

Но... предвидеть, планировать необходимо. Без взгляда в будущее кардинальную задачу ускорения социально-экономического развития страны, поставленную перед советским народом и экономикой XXVII съездом КПСС, не решить. В выполнение этих планов внесет свой вклад и Комплексная программа химизации народного хозяйства СССР на период до 2000 года. Создание новых конструкционных материалов, способных обеспечить интенсификацию всех отраслей народного хозяйства, - одно из главных ее направлений.

...В начале 30-х годов мы отмечали каждое новое достижение отечественной химии как величайшее событие в жизни страны. О нем писали газеты, восторженно рассказывало в многочисленных своих сообщениях радио.

Что ж, тогда было такое время: трудовая романтика, ломавшая устоявшиеся представления о возможностях человека и свободного труда, окрашивала в свои цвета вообще-то будничные, несмотря на их колоссальную значимость для индустриализации нашего молодого государства, дела и успехи. Но и в этой атмосфере приподнятости находились люди, способные трезво оценивать, казалось бы, самые выдающиеся, грандиозные события.

Помню, как кто-то на одном из митингов, сказал мне простые и спокойные слова: "Что ж, начало сделано.

Пройдет время, и мы научимся синтезировать природные материалы..."

Как он оказался прав, тот ученый из моей далекой молодости. И как опередила его жизнь " своем созидании! Сегодня отечественная химия не только синтезирует природные, но и создает материалы, которых никогда не было в ее "лабораториях". На каждом из них можно было бы смело поставить своеобразное клеймо госприемки:

"В практику!", "Создано человеком!" И я счастлив, что в год 70-летнего юбилея нашего государства мне посчастливилось обо всем этом рассказать читателям "Эврики".