Выбрать главу

Однако, несмотря на частые столкновения, ни в атмосфере, ни в океане сложных молекул не образуется. Почему же мы должны ожидать, что когда-то давно они, все-таки, смогли появиться в так называемом «первичном бульоне»? Сейчас более модно говорить о «мире РНК», но суть гипотезы осталось той же. На это обычно возражают, что они появляются, но уже существующие живые бактерии используют их в пищу. Это возражение, конечно, очень слабое. Ведь могли бы накапливаться необязательно органические вещества, но и какие-то сложные по химическому составу вещества, которые не годятся в пищу. Но такого не происходит, кроме различных простых солей и песчинок, которые появляются в результате размытия твердых пород водой, ничего в океане не образуется.

Несмотря на отсутствие каких-либо данных о возможности образования сложных химических соединений вследствие действия природных стихийных сил, эта гипотеза остается основной в современной науке. Ставились даже специальные опыты для подтверждения возможности образования сложных органических соединения в условиях близких к природным. Широко известен эксперимент Миллера-Юри, проведенный еще в 1953 году. Схема эксперимента показана на рисунке.

Рис. Схема эксперимента Миллера-Юри (из «Википедии», 2014)

Собранный аппарат представлял собой две колбы, соединённые стеклянными трубками в замкнутую цепь. Заполнявший систему газ представлял собой смесь из метана (CH4), аммиака (NH3), водорода (H2) и монооксида углерода (CO). Одна колба была наполовину заполнена водой, которая при нагревании испарялась, далее водяные пары попадали в верхнюю колбу, куда с помощью электродов подавались электрические разряды, имитирующие разряды молний на ранней Земле. По охлаждаемой трубке конденсировавшийся пар возвращался в нижнюю колбу, обеспечивая постоянную циркуляцию. После одной недели непрерывного цикла Миллер и Юри обнаружили, что 10 %–15 % углерода перешло в органическую форму. Около 2 % углерода оказались в виде аминокислот, причём глицин оказался наиболее распространённой из них. Были также обнаружены сахара, липиды и предшественники нуклеиновых кислот.

Так как в опыте Миллера-Юри использовался высоковольтный разряд в газе, имитирующий молнии в атмосфере, то в месте разряда молекулы газа разбивались на отдельные ионы, которые при выходе из зоны разряда могли соединяться в произвольном порядке, образуя новые химические соединения. Неудивительно, что больше всего из аминокислот было обнаружено именно молекул глицина, так как это простейшая из них, содержащая всего десяток атомов в своем составе (NH2 – CH2 – COOH). Другие молекулы аминокислот могут содержать до двадцати и более атомов, поэтому, очевидно, вероятность их появления должна уменьшаться по мере роста числа атомов в составе.

Удивительно другое, почему за прошедшие полвека эти опыты всего лишь повторялись в том же или несколько ином виде. А почему бы было не расширить эти опыты? Например, снять временную зависимость, отметив на графике, как изменяется количество аминокислот во времени (через час, через день, через неделю и т. д.). Вполне возможно, что начиная с какого-то момента времени, содержание аминокислот больше и не росло, а вышло бы «на полку», то есть реакция пришла бы в состояние равновесия. А это очень вероятно, ведь электрическому полю в газовом разряде без разницы какое вещество разбивать на ионы – простой трехатомный газ или сложную многоатомную аминокислоту. Все-таки, довольно очевидно, что газовый разряд – это не место для объединения простых атомов в сложные, а место, где, наоборот, связи между атомами рвутся под воздействием разогнанных электрическим полем ионов и электронов.

С другой стороны, если убрать разряд из схемы опыта Миллера-Юри, то время ожидания появления хотя бы одной молекулы аминокислоты в результате только кипячения и перемешивания увеличится до совершенно неприемлемых величин: даже не сотен или тысяч лет, а гораздо больше. Это связано с соотношением величин тепловой энергии при кипячении и энергии связи в молекуле газа. Энергия связи в молекуле газа составляет обычно несколько единиц электрон-вольта (1 эВ = 11600°K), а тепловая энергия молекул при кипячении составляет всего одну тридцатую долю от электрон-вольта, то есть примерно в сотню раз меньше энергии связи. А это значит, что даже в самой дальней части «максвелловского хвоста» распределения по энергиям, где находятся самые быстрые молекулы воды, нет молекул воды с энергией достаточной, чтобы ионизовать хотя бы один атом газа. Другими словами, энергии кипячения воды просто недостаточно для того, чтобы образовалась хотя бы одна молекула аминокислоты. Но в принципе, за много лет она может и возникнет из-за действия каких-либо других причин, например, жесткого космического излучения.