Выбрать главу

Эта картина в равной мере совместима как с символьным, так и с коннекционистским подходом к познанию, а также и с другими вычислительными подходами. Действительно, можно было бы попробовать доказать, что центральная роль вычисления в исследовании познания связана с тем, что вычислительные конструкции могут передавать практически любую разновидность каузальной организации. Мы можем рассматривать вычислительные формализмы в качестве источника идеального формализма для выражения паттернов каузальной организации и, более того (в сочетании с методами имплементации), в качестве идеального инструмента для их воспроизведения. Какая бы каузальная организация ни оказалась ключевой для познания и сознания, мы можем ожидать, что какая-то вычислительная конструкция сможет точно передать ее. Можно было бы даже попытаться показать, что именно эта гибкость скрывается за часто упоминаемой универсальностью вычислительных систем. Сторонники искусственного интеллекта не обязаны подписываться под каким-то одним видом вычисления, только и достаточным для ментальности; тезис ИИ столь правдоподобен именно из-за широты класса вычислительных систем[188].

Так что вопрос о том, какой именно класс вычислений достаточен для воспроизведения человеческой ментальности, остается открытым; но у нас есть серьезное основание верить, что этот класс не является пустым.

Глава 10

Интерпретация квантовой механики

1. Две тайны

Проблема квантовой механики почти столь же трудна, как проблема сознания. Квантовая механика дает нам удивительно точные формулы для предсказания результатов эмпирических наблюдений, но картина мира, которую она при этом рисует, лишь с очень большим трудом поддается осмыслению. Как наш мир может быть таким, каким он должен быть, чтобы предсказания квантовой механики оказывались успешными? В ответе на этот вопрос нет ничего даже отдаленного напоминающего консенсус. Как и в случае с сознанием, нередко кажется, что ни одно из решений проблемы квантовой механики не может быть удовлетворительным.

Многие полагали, что между двумя этими наиболее загадочными проблемами могла бы существовать какая-то глубокая связь (напр., Bohm 1980; Hodgson 1988; Lockwood 1989; Penrose 1989; Squires 1990; Stapp 1993; Wigner 1961). Если есть две тайны, то соблазнительно предположить, что у них имеется общий исток. Это искушение усиливается тем обстоятельством, что проблемы квантовой механики кажутся тесно сопряженными с понятием наблюдения, сущностным образом предполагающим отношение между опытом какого-то субъекта и всем остальным миром.

Чаще всего высказывалось предположение, что квантовая механика могла бы оказаться ключом к физическому объяснению сознания. Но, как мы видели, этот проект обречен на неудачу. Квантовые «теории» сознания в итоге страдают от такого же провала в объяснении, что и классические теории. В любом случае опыт должен рассматриваться как нечто выходящее за пределы физических свойств мира. Квантовая механика, возможно, могла бы содействовать характеристике психофизической связи, но одна лишь квантовая теория не может сказать нам, почему существует сознание.

Впрочем, две эти проблемы могут быть увязаны и более тонким образом. Даже если квантовая механика и не объясняет сознание, не исключено, что теория сознания могла бы пролить свет на проблемы квантовой механики. В конце концов, многие признают, что эти проблемы каким-то образом связаны с наблюдением и опытом. Естественно предположить, что теория опыта могла бы помочь нам разобраться в этом. Некоторые говорили об активной роли сознания в квантовой теории — допуская, к примеру, что сознание осуществляет «коллапс волновой функции» — но я буду отстаивать позицию, согласно которой роль сознания во всем этом не столь непосредственна. В частности, я попытаюсь показать, что мы можем переосмыслить проблемы квантовой теории, представив их в качестве проблем отношения между физической структурой мира и нашим опытом мира, и что, следовательно, надлежащая теория сознания может подкрепить неортодоксальные интерпретации квантовой механики.

2. Каркас квантовой механики

Основным каркасом квантовой механики является исчисление для предсказания результатов экспериментальных измерений. Здесь я охарактеризую одну из версий этого исчисления, оставляя в стороне множество технических деталей, чтобы дать простое описание, покрывающее большинство существенных черт. В этом параграфе я трактую этот каркас только как исчисление для эмпирических предсказаний, оставляя открытым вопрос о том, дает ли он прямое описание физической реальности. Глубокие интерпретационные проблемы обсуждаются в следующем параграфе.

вернуться

188

В некоторых случаях — как правило, только в философии сознания — такие термины, как «вычисление» используются для отсылки исключительно к классу символьных вычислений, или вычислений, производимых над репрезентациями (то есть системами, базовые синтаксические элементы в которых являются в то же время базовыми семантическими объектами). Разумеется, этот терминологический вопрос мало на что влияет: с позиции искусственного интеллекта важно то, чтобы в наличии имелась некая формальная система — такого рода, чтобы ее имплементация была достаточна для ментальности, — и неважно, считается ли она «вычислением» согласно этому критерию. Следует, однако, отметить, что в любом случае использовать данный термин подобным образом — значит порывать связи с его истоками в теории вычисления. Даже большинство машин Тьюринга не будут считаться «вычислительными» в этом смысле, так как лишь некоторые из них могут быть интерпретированы в качестве таких, которые производят вычисления над концептуальными репрезентациями. По сходным причинам подобное ограничение класса «вычислений» приводит к утрате (черче — тьюринговой) универсальности вычисления, которая, собственно, является, возможно, одним из самых серьезных оснований для доверия к (функциональному) тезису ИИ.