Выбрать главу

Ядро квантовой механики составляют два принципа, определяющие динамику волновой функции: уравнение Шредингера и постулат измерения. Два этих совершенно разных принципа совместно определяют изменение волновой функции той или иной системы с течением времени.

Основное содержание квантовой механики заключено в уравнении Шредингера. Это дифференциальное уравнение, определяющее изменение волновой функции системы почти при любых обстоятельствах. Детальная структура этого уравнения не важна для наших целей. Наиболее важной характеристикой является в данном случае то, что оно представляет собой линейное дифференциальное уравнение: если имеются два состояния, А и В, такие, что А изменяется в А' а В — в В', то состояние, оказывающееся суперпозицией А и Б, будет трансформироваться в суперпозицию A' и В'. Стоит также отметить, что динамика уравнения Шредингера такова, что относительно дискретные состояния имеют тенденцию к размытию с течением времени. Состояние, изначально являющееся суперпозицией значений в каком-то ограниченном диапазоне, как правило, трансформируются в суперпозицию значений в гораздо большем диапазоне. Наконец, уравнение Шредингера является абсолютно детерминистическим.

Уравнение Шредингера весьма прозрачно и не вызывает больших вопросов. Именно в нем заключена содержательная часть квантовой теории. При применении квантовой теории к практическим или экспериментальным проблемам дело по большей части сводится к вычислению эволюции различных состояний согласно шредингеровской динамике.

Уравнение Шредингера, однако, не исчерпывает сути дела. Согласно этому уравнению, подавляющее большинство физических состояний вскоре трансформируется в суперпозицию широкого диапазона состояний. Но это не сочетается с наблюдаемым нами миром. Когда мы измеряем положение частицы, мы получаем какое-то определенное значение, а не суперпозицию значений, которую предсказывало бы уравнение Шредингера. Если бы квантовая динамика сводилась к уравнению Шредингера, то даже на макроскопическом уровне мир оказался бы в состоянии дикой суперпозиции. Но наш опыт говорит, что этого не происходит. Стрелки расположены определенным образом, движущиеся объекты наделены определенным и поддающимся измерению импульсом и т. п. Так что здесь должно быть еще что-то, позволяющее нам переходить от этого уравнения к таким дискретным событиям, которые характеризуют наш опыт.

Второй частью картины в стандартном формализме является постулат измерения (известный также как постулат коллапса или проекции). В нем утверждается, что при определенных обстоятельствах шредингеровская динамика оказывается неприменимой. А именно, утверждается, что при проведении измерения волновая функция коллапсирует в нечто более определенное. Тип ее коллапсирования зависит от того, какое свойство подвергается измерению. К примеру, если мы измеряем спин частицы, то, даже если до этого она находилась в состоянии суперпозиции, она коллапсирует в состояние, в котором спин будет либо вверх, либо вниз. Если мы измеряем положение частицы, то ее волновая функция коллапсирует в состояние с вполне определенным положением[190]. Итоговое состояние по-прежнему соответствует волновой функции, но эта волновая функция такова, что вся ее амплитуда сконцентрирована в определенном положении; во всех остальных местах она оказывается равной нулю. Любой величине, которую мы могли бы измерить, соответствует оператор, и при измерении данное состояние коллапсирует в состояние, являющееся собственным состоянием этого оператора. Собственное состояние оператора — это всегда состояние, в котором соответствующая ему измеряемая величина имеет какое-то определенное значение. Из этого следует, что когда мы измеряем величину, результатом всегда будет определенное значение этой величины, что в точности согласуется с имеющимся у нас опытом.

вернуться

190

Здесь, как и в других местах, я иду на упрощение картины. Никакое измерение не является абсолютно точным, так что в его результате никогда не возникает состояние, положение которого является в полном смысле определенным. На деле волновая функция коллапсирует в состояние, вся амплитуда которого сконцентрирована в очень узком диапазоне локаций. Проще говорить так, однако, будто коллапсированные положения являются в полной мере определенными.