Стабилизаторы напряжения и тока на ИМС
Задача создания стабильного источника питания встает всякий раз, когда необходимо обеспечить независимость параметров электронного устройства от изменений питающего напряжения. Современная аппаратура, работающая на цифровых и аналоговых микросхемах, всегда предусматривает наличие стабилизаторов напряжения и тока, как правило, нескольких. С распространением интегральных операционных усилителей (ОУ) появилась возможность решить эту задачу просто и эффективно с точностью регулировки и стабильности в диапазоне 0,01…0,5 %, причем ОУ легко встраивать в традиционные стабилизаторы напряжения и тока.
Простейший стабилизатор напряжения представляет собой усилитель постоянного тока, на вход которого подано постоянное напряжение стабилитрона или часть его. Нагрузочная способность такого стабилизатора определяется силой максимального выходного тока ОУ.
Следящие стабилизаторы, как известно, работают на принципе сравнения опорного и выходного напряжений, усиления их разности и управления электропроводностью регулирующего транзистора.
Стабилизатор по схеме рис. 1 выдает напряжение U выхбольшее, чем опорное напряжение стабилитрона V D1,а стабилизатор по схеме рис. 2 — меньшее.
Рис. 1. Стабилизатор с делителем выходного напряжения
Рис. 2. Стабилизатор с делителем опорного напряжения
Стабилизаторы питаются от одного источника. С помощью эмиттерного повторителя V T2увеличивают ток нагрузки, в нашем примере — до 100 мА, но можно и более с составным повторителем на мощном транзисторе. Транзистор V T1защищает выходной транзистор V T2от перегрузок по току, причем датчиком тока служит резистор R8небольшого сопротивления, включенный в цепь эмиттера транзистора V T2.Когда падение напряжения на нем превысит Uб–э=0,6 В, откроется транзистор V T1и зашунтирует эмиттерный переход транзистора V T2.При токах нагрузки до 10… 15 мА резисторы R7, R8и транзисторы V T1, VT2можно не ставить. Отметим, что в стабилизаторах по схемам рис. 1 и 2 входное напряжение не должно превышать максимально допустимой для ОУ суммы напряжений питания.
Если проектируемый источник питания имеет выходное напряжение, не меньшее чем сумма минимально допустимых напряжений питания для имеющегося ОУ, то его лучше включить в стабилизатор таким образом, чтобы усилитель питался стабилизированным напряжением. Схема подобного стабилизатора приведена на рис. 3.
Рис. 3. Улучшенный стабилизатор напряжения:
a — принципиальная схема, б — нагрузочная характеристика
Здесь дополнительно включены несколько элементов, улучшающих работу стабилизатора напряжения. Потенциал выхода О У DA1смещен в сторону положительного напряжения с помощью стабилитрона V D3и транзистора V T1.Выходной эммитерный повторитель — составной (VT2, VT3),а к базе защитного транзистора V T4подключен делитель R4R5,что позволяет создать «падающую» характеристику ограничения тока перегрузки. Ток короткого замыкания не превышает 0,3 А, хотя нормальный рабочий ток составляет 0,5 А. Термоком–пенсированный источник опорного напряжения выполнен на микросхеме К101КТ1А (DA2).Выходное напряжение стабилизатора, равное +15 В, изменяется всего на 0,0002 % при изменении входного напряжения в пределах 19…30 В; при изменении тока нагрузки от нуля до номинального выходное напряжение падает лишь на 0,001 %. В этом стабилизаторе подавление пульсаций входного напряжения частотой 100 Гц составляет 120 дБ. К достоинствам стабилизатора следует отнести также и то, что в отсутствии нагрузки потребляемый ток составляет около 10 мА. При скачкообразном изменении тока нагрузки выходное напряжение устанавливается с погрешностью 0,1 % за время не более 5 мкс.
Практически нулевые пульсации напряжения на выходе может обеспечить стабилизатор по схеме рис. 4.
Рис. 4. Источник питания с компенсированными пульсациями
Если движок переменного резистора R1находится в верхнем (по схеме) положении, амплитуда пульсаций максимальна. По мере перемещения движка вниз амплитуда будет уменьшаться, так как напряжение пульсаций, поданное на инвертирующий вход ОУ через конденсатор С2,в противофазе складывается с выходным напряжением пульсаций. Примерно в среднем положении движка резистора R1пульсации будут компенсированы.
Стабилизаторы по приведенным выше схемам рассчитаны на положительное выходное напряжение. Чтобы получить отрицательное, надо в качестве повторителя применить р–n–ртранзистор, а также заземлить положительную шину питания ОУ. Но можно поступить по–другому, если в аппаратуре требуются стабилизированные напряжения разной полярности. На рис. 5 приведены две упрощенные схемы соединения стабилизаторов для получения выходных напряжений разного знака.
Рис. 5. Схема образования двуполярного стабилизированного напряжения:
а — на разнополярных стабилизаторах, б — на одинаковых стабилизаторах
В первом случае входная и выходная цепи имеют общую шину. Пусть, например, имеются только положительные стабилизаторы. Тогда в стабилизаторе по второй схеме их можно применить, если оба канала по входным цепям гальванически развязаны, чтобы можно было заземлять положительный полюс нижнего (по схеме) стабилизатора. Источником опорного напряжения для одного из каналов служит стабилитрон, а для второго — выходное напряжение первого стабилизатора. Для этого необходимо включить делитель из двух резисторов между выводами +U СTи — U CT стабилизаторов и подвести напряжение средней точки делителя к неинвертирующему входу ОУ второго стабилизатора, заземлив инвертирующий вход ОУ. Тогда выходные напряжения двух стабилизаторов (несимметричные в общем случае) связаны и регулирование напряжений осуществляется одним переменным резистором.
Если для питания устройства используется одна батарея, а необходимы два питающих напряжения с заземленной средней точкой, тр можно применить активный делитель на ОУ с повторителями для увеличения нагрузочной способности (рис. 6).
Рис. 6. Преобразование однополярного напряжения в симметричное двуполярное
Если R1 = R2,то равны и выходные напряжения относительно заземленной средней точки. Через выходные транзисторы V T1и V T2протекают полные токи нагрузки, а падения напряжения на участках коллектор — эмиттер равны половине входного напряжения. Зто надо иметь в виду при выборе радиаторов охлаждения.
Ключевые стабилизаторы напряжения зарекомендовали себя наилучшим образом с точки зрения экономичности, так как КПД таких устройств всегда высокий. Несмотря на их сложность по сравнению с линейными стабилизаторами-, только за счет уменьшения размеров теплоотводящего радиатора проходного транзистора ключевой стабилизатор позволяет уменьшить габариты регулируемого мощного источника питания в два–три раза. Недостаток ключевых стабилизаторов заключается в повышенном уровне помех. Однако рациональное конструирование, когда весь блок выполнен в виде экранированного модуля с расположенной непосредственно на теплоотводе мощного транзистора платой управления, позволяет свести помехи к минимуму. Устранить «пролезание» высокочастотных помех в не–стабилизиоованный источник первичного питания и нагрузку можно путем включения последовательно радиочастотных дросселей, рассчитанных на постоянный точ 1…3 А. Имея в виду эти замечания, подготовленный радиолюбитель может браться за создание ключевых стабилизаторов напряжения, в которых с успехом работают интегральные компараторы.