Биологический механизм старения можно сравнить с мотором старого гоночного болида, который на ходу начал тарахтеть и заглох. Своевременный технический осмотр автомобиля, периодическая регулировка, наладка и замена поврежденных деталей могли бы предотвратить выход мотора из строя. Но профилактическое обслуживание обходится дорого; для него не всегда есть время и деньги, из-за чего его проводят не полностью. Наш организм также требует профилактического обслуживания, и это сложное дело. Необходимо постоянно отыскивать и восстанавливать повреждения молекул ДНК в каждой клетке, чтобы заложенный в ней код не претерпевал изменений. Ведь ДНК — не что иное, как строительный план, на котором основывается функционирование клеток, тканей и органов. И здесь выработалась исключительно изобретательная биологическая машинерия: большой клубок взаимодействующих друг с другом белков движется, словно поезд, по рельсам молекул ДНК, отыскивает повреждения и тут же их устраняет. Такой процесс требует больших инвестиций. Но бывает, что клетки из-за остаточных повреждений в ДНК начинают производить неправильные белки или же, словно сорвавшись с цепи, становятся причиной развития рака.
Белки, из которых построены клетки, ткани и органы, с течением времени также могут получать повреждения. Речь идет о комплексе свернутых структур, специфические функции которых зависят от того, как именно они свернуты. Для сворачивания белка клетки вооружены белками-шаперонами; они инициируют и сопровождают процесс сворачивания. Иногда белки спонтанно распрямляют складки или же получают повреждения иного рода, утрачивают свои функции и тогда подлежат замене. Некоторые белки уникальны — как, например, белки, входящие в состав хрусталика или головного мозга; они не могут быть заменены, но их вполне можно восстановить. Так, благодаря активности шаперонов часть белков может получить правильную складку обратно. Но точно так же как репарация ДНК, процесс требует большой затраты ресурсов, и, соответственно, не все белки любой ценой ремонтируются или заменяются. Хрусталик, например, представляющий собой первоначально совершенно прозрачный белок, по мере того как мы стареем, постепенно мутнеет, как яичный белок при варке, и пропускает все меньше света, что приводит к возникновению катаракты. Иметь лучшие хрусталики с точки зрения эволюции было бы чересчур: ведь хорошо видеть человеку нужно лишь на протяжении двух поколений. Поэтому операции по удалению катаракты становятся необходимы после 50 лет, а не раньше.
Теория «тела на выброс» может объяснить, почему старение — составная часть нашей жизни, но также и почему столь резко различается продолжительность жизни различных видов. Мыши очень быстро достигают периода половой зрелости, у них короткая беременность и большое число детенышей в выводке. Такое вложение ресурсов в потомство происходит за счет вложений в собственное тело. В естественных условиях мыши начинают стареть в среднем уже через несколько месяцев. Риск сделаться чьей-то добычей, погибнуть от холода или отсутствия пищи — в природных условиях это не сулит долгой жизни. И чаще всего у мышей нельзя заметить признаков старости, все они молодые особи. Стареют мыши, если их содержат в качестве домашних или же, в идеальных условиях, как лабораторных животных. Ко-гда приходит пора, лабораторные мыши седеют, их мышечная сила слабеет, они хуже бегают, у них развивается рак и они погибают, дожив максимум до трехлетнего возраста.
Изменения окружающей среды оказывают большое влияние на продолжительность полового развития и скорость старения, то есть на течение и продолжительность жизни. На это имеется множество указаний. Если условия неблагоприятны и риск погибнуть высокий, эволюционное давление на увеличение потомства растет. Детей должно появляться как можно больше. И тогда происходит отбор индивидов, которые уже в юном возрасте могут давать потомство, пусть даже ценой собственной гибели. Такое можно наблюдать у мышей. Подобно другим недолго живущим млекопитающим, они приобрели свойства, позволяющие им максимально инвестировать в плодовитость в молодом возрасте.