— уровень доходов и продолжительность жизни;
— доходы и расходы домашнего хозяйства;
— длина поездки и расход бензина;
— посещаемость занятий и оценка на экзамене.
Если рассматривать картину в целом, то здесь будет какая-то общая тенденция (прямая или кривая линия), а в каждом конкретном случае к ней добавляется случайный разброс, непредсказуемость, погрешность. По реальным данным можно оценить наличие (силу, степень, тесноту) взаимосвязи и даже построить уравнение такой зависимости. Такое уравнение даст нам только ориентир, среднюю картину и позволит делать приблизительные прогнозы.
Мы будем строить модель в виде одного уравнения, в котором есть один факторный признак и один результативный. Такая модель называется ПÁРНАЯ РЕГРЕССИЯ. Это означает, что у нас рассматривается ПАРА случайных величин, то есть в уравнении участвуют ДВЕ переменные.
Как и в предыдущей работе, вначале мы смоделируем исходные данные и познакомимся со статистическими методами. Затем мы возьмём реальные данные и применим к ним эти изученные технологии. Моделирование даёт идеальные, «красивые» данные, по которым можно начать обучение. Реальные данные всегда «угловатые», «шершавые», «некрасивые», неидеальные. Но это жизнь, и именно с реальными данными приходится иметь дело исследователям, инженерам, программистам, экономистам.
Модели описывают реальную жизнь очень приблизительно, но даже такое приближённое описание может быть полезно при решении реальных задач на производстве и в бизнесе. Слово ПРИБЛИЖЁННОЕ указывает, что есть некоторая погрешность и что наша модель, наше уравнение ПРИБЛИЖАЕТСЯ к реальной жизни. То есть близко, но не точно. И это уже лучше, чем полная неизвестность и неопределённость. А полной, абсолютной точности никогда не бывает. Даже на рынке можно поторговаться, и цена изменится, причём у разных покупателей получится по-разному. Так что, выходя из дома за покупками, человек только очень приблизительно может оценить предстоящие расходы.
Варианты задания
Варианты заданий представлены в таблице ниже. Здесь мы используем следующие условные обозначения.
X — факторный признак, или фактор, или независимая переменная. Мы моделируем Х как случайную величину с РАВНОМЕРНЫМ РАСПРЕДЕЛЕНИЕМ в указанном диапазоне.
E — случайная составляющая. Будем моделировать Е как случайную величину со СТАНДАРТНЫМ НОРМАЛЬНЫМ РАСПРЕДЕЛЕНИЕМ, то есть с нулевым средним и единичной дисперсией.
Y — результативный признак, или результат, или зависимая переменная. При моделировании мы вычисляем Y по формуле, в которой участвуют фактор X и случайность E. Коэффициент при случайной составляющей определяет её СИГМУ (стандартное отклонение) и, соответственно, разброс вокруг среднего.
n — объём выборки. Это количество изучаемых объектов (статистических единиц), например, людей, квартир или жёстких дисков. У каждого объекта будут свои значения X и Y. Например, у каждого человека будет своя пара значений: роста и вес. Можно сказать, что в нашем случае объём выборки — это число строк в таблице с данными, или число записей в базе данных, или КОЛИЧЕСТВО ПАР случайных чисел {X, Y}. Для каждого объекта будет своя пара чисел Х и Y. В нашей работе объём выборки равен 200 для всех вариантов.
Оформление отчёта подробно описано в предыдущем выпуске серии. Создадим новую рабочую книгу. Сохраним отчёт в файле с коротким информативным названием. Сделаем титульный лист отчёта и заготовку оглавления.
В данной работе мы будем вначале рассматривать линейную функцию, а затем нелинейную. Соответственно, у нас имеется две таблицы с вариантами заданий.
Выберем свой вариант задания и опишем его на новом листе отчёта.
Зарисовка линейной функции
Вначале надо представить себе, что представляют собой наши данные, как будет выглядеть график. Для этого сделаем зарисовку на бумаге — как в предыдущей работе.
Нам предстоит изобразить расположение нашей линии и форму диаграммы разброса — в самых общих чертах.
Зарисовка диаграммы разброса
Изобразим оси координат и займём нужное место на листе бумаги.
Масштаб на графике необязательно должен начинаться от нуля. Главное, чтобы диаграмма разброса занимала всё поле графика. Метки на осях — «красивые», круглые числа.