Выбрать главу

Величина (модуль, абсолютное значение) коэффициента характеризует ТЕСНОТУ линейной связи. Чем ближе значение к единице, тем меньше разброс, тем ближе точки к прямой линии. Чем ближе коэффициент к нулю, тем сильнее разброс вокруг прямой. Традиционное толкование величины коэффициента корреляции приводится в таблице.

Возможна и другая ситуация — НЕЛИНЕЙНАЯ зависимость, которая тоже представляет собой отсутствие линейной связи. Нелинейной зависимостью является всё, что не является линейным, например, кривая или ломаная линия. В этом случае коэффициент линейной корреляции будет близок к нулю. Но при этом точки могут быть очень тесно расположены вокруг кривой или ломаной линии. Для анализа степени нелинейной связи используют другие коэффициенты корреляции. В данной работе мы ограничимся только анализом тесноты линейной зависимости.

Как и во многих других случаях, для вычисления коэффициента корреляции в Excel имеются несколько способов:

— надстройка;

— функции;

— формулы.

В следующих разделах мы рассмотрим все эти возможности, а затем сравним полученные результаты.

Надстройка

Вызываем модуль Корреляция статистической надстройки:

Data — Analysis — Data Analysis — Correlation

Данные — Анализ — Анализ данных — Корреляция.

Параметры корреляционного анализа

В диалоговом окне

Correlation

Корреляция

указываем следующие параметры:

Input — Input Range

Входные данные — Входной интервал.

В выбранном диапазоне ячеек должны быть два столбца значений X и Y.

Затем указываем расположение исходных данных:

Labels in first row

Метки в первой строке.

Выделяем значения в столбцах X и Y вместе с их заголовками. В этом случае в таблице с результатами анализа будут выводиться названия переменных.

Указываем, что наши исходные данные расположены по столбцам:

Grouped By — Columns

Группирование — по столбцам.

Обратите внимание, что здесь имеется в виду расположение данных по столбцам, а не статистическая группировка, хотя на экране и присутствует слово ГРУППИРОВАНИЕ. Как говорил Козьма Прутков: «Не верьте глазам своим». Мы пока что просто описываем исходные данные и даже не начинали заниматься группировкой.

Отмечаем первую ячейку, начиная с которой будут выводиться результаты анализа:

Output options — Output Range

Параметры вывода — Выходной интервал.

Результаты корреляционного анализа

На экран выводится таблица коэффициентов корреляции. На пересечении строки Y и столбца Х выводится искомый коэффициент. Единичные коэффициенты на диагонали — это корреляция переменной с самóй собой.

Чтобы получить больше разрядов в дробной части, увеличим ширину столбца.

Точное значение коэффициента

Функция CORREL / КОРРЕЛ

Второй способ вычисления коэффициента корреляции — это готовая функция

CORREL (array1, array2)

КОРРЕЛ (диапазон_x; диапазон_y).

Два обязательных аргумента — это диапазоны ячеек X и Y. Здесь «иксы» и «игреки» задаются по отдельности. Напомним, что в английской версии программы аргументы функции разделяют запятой, а в русской — точкой с запятой.

Вызов функции CORREL

Увеличиваем ширину столбца и сравниваем результаты расчётов с предыдущим разделом. Пока всё сходится.

Теперь на новом листе сгенерируйте данные с разным разбросом, то есть с разным множителем S в уравнении. Определите значение коэффициента корреляции. Подберите величину случайного разброса, чтобы получить

0,3

0,5

0,7