f = m / Σ m .
7. Средняя арифметическая
Основной средней величиной является средняя арифметическая. Выделяют простую и взвешенную среднюю арифметическую .
Базой для расчета простой средней арифметической являются первичные записи результатов наблюдения. Предположим, что известны значения признака x 1 x 2 , …, х п . Каждое из этих значений повторяется один раз (или теоретически одинаковое количество раз), т. е. данные не сгруппированы. Тогда для такого ряда следует использовать формулу средней арифметической простого ряда или простую среднюю арифметическую:
где х — значение варьирующегося признака;
n – число единиц совокупности.
Базой для расчета взвешенной средней арифметической является обработанный цифровой материал, т. е. сгруппированные данные. Для таких данных используется формула средней арифметической взвешенной:
где х — значение варьирующегося признака;
m – веса, т. е. частоты, показывающие, сколько раз повторяется каждое значение признака в данной совокупности.
Формула получена путем взвешивания значений каждой варианты и деления суммы вариант на сумму весов. Формулы простой и взвешенной средней арифметической не эквивалентны друг другу.
Свойства средней арифметической:
1) алгебраическая сумма отклонений всех вариантов от средней арифметической равна нулю:
x = Σxm /Σm => x Σm = Σxm =>Σ(х-х)m = 0.
Это свойство используется для проверки правильности расчетов;
2) сумма квадратов отклонений вариант от их средней арифметической больше суммы квадратов отклонений вариант от любого другого числа, не равного средней арифметической:
где x ≠ a ;
3) среднее алгебраическое суммы нескольких варьирующихся признаков равно сумме средних этих признаков:k = x + y + z + …;
Это свойство позволяет определить сумму путем суммирования значений каких*либо признаков;
4) если все варианты ( х ) увеличить или уменьшить на какое-либо постоянное число (а), средняя (x) увеличится или уменьшится на то же самое число (y):( х – а ) = у ;
x – a = y;
5) если все варианты (х) увеличить или уменьшить в одно и то же число раз (в), то средняя арифметическая увеличится или уменьшится в то же самое число раз:
если
8. Средняя гармоническая, геометрическая, квадратическая, степенная
При решении задач расчет средней величины начинается с составления исходного отношения – логической словесной формулы средней. Она составляется на основе теоретического и логического анализа. Иногда среднюю арифметическую нельзя использовать. В этом случае в зависимости от ситуации применяется одна из трех форм средней.
Средняя гармоническая простая строится по формуле:
где n — число единиц совокупности или число вариантов;
х — значения варьирующегося признака.
Средняя гармоническая простая используется для несгруппированных данных.
Средняя гармоническая взвешенная строится по формуле:
где х — значения варьирующего признака;
m — веса;
n — число единиц совокупности. Среднюю гармоническую взвешенную используют для сгруппированных данных, т. е. когда каждое значение х повторяется различное число раз.
Средняя квадратическая простая строится по формуле:
где n — число единиц совокупности или число вариантов; х — значения варьирующегося признака.
Средняя квадратическая простая используется для несгруппированных данных.
Средняя квадратическая взвешенная строится по формуле:
где m – веса;
х – значения варьирующего признака.
Среднюю квадратическую взвешенную используют для сгруппированных данных.
Данные формулы используются редко, в специальных расчетах.