С помощью индексов решаются две основные задачи:
1) синтетическая задача – обобщение, синтез дина мики отдельных элементов в сложные явления в од ном обобщающем показателе (сводном индексе);
2) аналитическая задача – анализ влияния изменения отдельных факторов на изменение сложного явления.
Классификация индексов по различным при знакам:
1) по степени охвата совокупности выделяют индивидуальные индексы (элементарные) и общие индексы (сводные или сложные);
2) по форме построения выделяют агрегатные, средневзвешенные (арифметические, гармонические) индексы;
3) по применяемым весам выделяют индивидуальные индексы с постоянными и переменными весами;
4) по состоянию явления выделяют индексы переменного состава, постоянного состава, структурных сдвигов;
5) по содержанию индексируемых величин выделяют индексы цен, физического объема товарооборота, себестоимости, трудоемкости и т. д.;
6) по базе сравнения выделяют динамические (базисные, цепные) индексы, индексы выполнения плана, планового задания, территориального сравнения.
Классификация показателей при построении индексов:
1) количественные показатели, характеризующие объем того или иного явления.
К ним относятся:
а) q – физический объем товарооборота (количество проданной продукции в натуральном выражении);
б) q – физический объем продукции (количество произведенной продукции на предприятии);
в) t – число рабочих;
г) h – посевная площадь и др. Количественные показатели получают путем подсчета;
2) качественные показатели характеризуют уровень явления в расчете на ту или иную единицу совокупности.
К ним относятся:
а) р – цена единицы товара (себестоимость);
б) z – себестоимость единицы продукции (затраты на производство единицы продукции);
в) t – трудоемкость единицы продукции (затраты рабочего времени на производство единицы продукции);
г) w – производительность труда (выработка продукции в единицу времени);
д) у – урожайность;
3) суммарные (итоговые, количественно-качественные) показатели, характеризующие суммарные, общие размеры исследуемого явления.
К ним относятся:
а) S – товарооборот:
S = p × q ;
б) Т – затраты рабочего времени (труда) на производство всей продукции:
Т = t × q ;
в) С – затраты на производство продукции:
С = z × q ;
г) V – валовой сбор с/х культур по видам:
V = y × n .
13. Индивидуальные индексы
Индивидуальный индекс – это отношение величины показателя в отчетном или текущем периоде к величине того же показателя в базисном периоде:
где i – индивидуальный индекс;
х — любой индексируемый показатель (качественный, количественный, качественно-количественный);
1 – отчетный или текущий период;
х 1 – сравниваемый уровень;
0 – базисный период;
х 0 – базисный уровень.
Индивидуальные индексы строятся для соизмеримых однородных совокупностей и чаще всего выражаются в процентах.
Индивидуальный индекс характеризует изменение объема или уровня исследуемого показателя в отчетном периоде по сравнению с базисным. Если ix < 100 %, то уровень индексируемого показателя снизился по сравнению с базисным периодом. Если ix > 100 %, то уровень индексируемого показателя увеличился по сравнению с базисным периодом. Если ix = 100 %, то уровень индексируемого показателя остался прежним.
Примеры индивидуальных индексов:
1) индивидуальный индекс цен:
2) индивидуальный индекс физического объема товарооборота:
3) индивидуальный индекс товарооборота:
В связи с тем, что индивидуальные индексы используются для изучения динамики индексируемого показателя за короткие и более продолжительные периоды, возникает необходимость исчисления системы последовательных индексов. Различают два метода последовательного индексирования.
1. Метод постоянной (фиксированной) базы.
Согласно данному методу один из периодов, находящихся в знаменателе, принимается в качестве базисного, а остальные, находящиеся в числителе, последовательно меняются.
Предположим, что имеются данные р0, р1, …, рn-1, pn. Тогда система индивидуальных индексов с постоянной базой может быть записана следующим образом:
Это система базисных индексов. Индексы этой системы называются базисными и показывают, как изменяется цена по мере увеличения длительности рассматриваемого периода по отношению к одной базе.