В ближайшие годы управление будет все в большей степени передаваться приборам. Производители автомобилей класса «люкс» – Infiniti, Mercedes-Benz, Volvo – уже создают машины, в которых система лазерного автомата постоянной скорости работает даже в условиях прерывистого движения в пробках, где разгон часто чередуется с торможением. Компьютеризированная система рулевого управления помогает машине держаться в середине ряда, а также при необходимости экстренно тормозить. Другие компании стремятся создать еще более совершенные средства контроля и управления. Компания Tesla Motors, пионер электромобилестроения, планирует запустить в серийное производство машину, которая на 90 % будет управляться автоматически. Так, во всяком случае, заявил директор компании Элон Маск [3]. Появление беспилотного автомобиля Google не только потрясает самые основы нашего представления о вождении. Оно меняет представление о компьютерах и роботах. Раньше мы принимали как нечто само собой разумеющееся, что есть профессии и роды деятельности, недоступные для автоматизации. Компьютеры умеют делать массу разных вещей, но не все на свете. В 2004 году вышла книга экономистов Френка Леви и Ричарда Мюрнейн «Executing a left turu across ancoming traffic» («Новое разделение труда: как компьютеры создают новый рынок труда»). В ней авторы убедительно доказали, что существуют реальные границы способности программистов к воспроизведению человеческих талантов, особенно тех, которые обусловлены сенсорным восприятием, распознаванием образов и концептуальными знаниями. В качестве частного примера они привели управление автомобилем по реальной трассе, требующее мгновенной интеграции громадного количества зрительных сигналов и способности безболезненно вписываться в непрерывно и неожиданно меняющуюся дорожную ситуацию. Мы сами не вполне понимаем, как это происходит, и потому идея о том, что программисты могут свести все сложности, неуловимые нюансы и случайности к набору инструкций и строчкам программного кода, показалась авторам попросту смехотворной. «Выполнение левого поворота на нерегулируемом перекрестке, – пишут Леви и Мюрнейн, – требует учета такого множества факторов, что трудно представить себе набор правил, которые могли бы имитировать поведение водителя». Авторы твердо уверены (и вместе с ними большинство остального человечества), что руль еще надолго останется в крепких руках человека-водителя [4].
Оценивая способности компьютеров, экономисты и психологи уже давно выявили два вида знания: имплицитное и эксплицитное. Имплицитное знание называют иногда процедурным и обозначают им нашу способность делать некоторые вещи, не задумываясь: читать книги, ездить на велосипеде, ловить верхний мяч, вести машину. Эти навыки являются не врожденными, а приобретенными, и одни люди усваивают их лучше, а другие хуже. И те и другие практически невозможно описать простыми словесными выражениями. Когда вы делаете поворот на забитом машинами перекрестке, то, по данным нейрофизиологов, ваш мозг просто-таки перегружен работой. Многие участки головного мозга обрабатывают бесчисленные входящие сенсорные сигналы, оценивают время и расстояние, а также приводят в согласованные движения руки и ноги [5]. Однако, если кто-нибудь попросит вас подробно описать все, что вы чувствуете и делаете, совершая поворот, вам это удастся только в очень общих чертах. Способности к выполнению подобных навыков сидят глубоко в нашей нервной системе. Эти ментальные процессы происходят без участия сознания.
В основном наши способности оценивать разнообразные ситуации и быстро принимать адекватные им решения зависят как раз от имплицитных восприятий. Благодаря им проявляются творческие способности.
Эксплицитное знание, известное также как декларативное, можно осознанно описать: как поменять колесо; изготовить фигурку журавлика из бумаги; решить квадратное уравнение. Один человек может объяснить что-то другому в виде письменного или устного руководства: делай раз, делай два и т. д.