Выбрать главу

С. А. Балезин у сконструированного им прибора для исследования синтеза сахаров из формальдегида

Исследователи, изучавшие этот процесс, испытывали большие трудности при химическом анализе смесей, получающихся в реакции конденсации формальдегида. Решению именно такой задачи были посвящены работы, выполненные в 1949—1952 гг. С. А. Балезииым совместно с Е. К. Сурыкиной [102]. Для решения поставленной задачи они использовали хроматографический метод анализа как на колонках, так и на бумаге. Для получения жидкостных хроматограмм был сконструирован оригинальный прибор с простым контрольным механизмом. Отличалась новизной и методика проявления бумажных хроматограмм углеводов.

Несомненно, современные исследователи смогли шагнуть существенно дальше в понимании процессов образования углеводов из формальдегида, но вклад С. А. Балезина в изучение этой реакции для своего времени был весьма существенным, о чем говорит уже цитировавшийся отзыв академика Н. Д. Зелинского. И если в будущем удастся осуществить промышленный синтез сахаров из непищевого сырья, имя профессора С. А. Балезина будет среди тех, чьи работы составят его фундамент.

Уже в ходе работы над этой книгой авторы получили интересное письмо от одного из учеников С. А. Балезина — лауреата Государственной премии профессора В. Б. Ратинова. В нем он, в частности, писал: «Недавно нам пришлось познакомиться с экспериментально-теоретическим исследованием, выполненным инженером Л. В. Евсеевой. Она изучала влияние формальдегида на долговечность бетона. В этом исследовании мы встретили на первый взгляд неожиданную ссылку на работы С. А. Балезина. В действительности совершенно закономерно эти работы легли в основу рабочей гипотезы о механизме процессов, приводящих к деструктивным изменениям в бетонных конструкциях на предприятиях, производящих формальдегид. И в дальнейшем эта гипотеза получила однозначное подтверждение. Суть ее нетрудно понять, если вспомнить о том, что в бетоне среди других веществ содержатся соединения кальция и магния, участвующих в конденсации формальдегида».

Эта работа позволяет по-новому взглянуть на исследования С. А. Балезина в области органической химии — отметить их связь с другим главным делом его жизни — с учением о коррозии материалов.

Работы по классификации ингибиторов коррозии металлов

Большинство металлов, используемых человеком в его практической деятельности, находится в термодинамически нестабильном состоянии. В зависимости от условий такие металлы с различной скоростью подвергаются коррозионному разрушению. При этом гибнет не только металл, но и овеществленный в металлах и металлоизделиях человеческий труд. «Сохранить эти огромные ценности, продлить жизнь многих миллионов металлических изделий, машин, станков, металлоконструкций — задача большого народнохозяйственного значения», — писал С. А. Балезин.

Систематическое исследование коррозионных процессов и возможных путей их торможения практически ведется с пачала XX в. За рубежом известным итогом коррозионных исследований к 30-м годам явилась фундаментальная книга У. Эванса «Коррозия металлов». В основу отечественных исследований по коррозии и защите металлов легли работы В. А. Кистяковского, Н. А. Изгарышева, Г. В. Акимова, ставшие своего рода классическими. В 1935 г. АН СССР провела первую конференцию по коррозии металлов. В ней приняли участие многие из тех, чьими трудами создавалась современная антикоррозионная наука: А. Н. Фрумкин, Л. Г. Гиндин, Н. Д. Томашов, С. Г. Веденкин, В. В. Скорчеллетти, А. И. Шултин и др.

Определились и три основных направления в борьбе за долговечность металлов: повышение коррозионной стойкости конструкционных материалов; понижение агрессивности сред по отношению к защищаемым материалам; изолирование конструкционных материалов от воздействия коррозионно-агрессивых сред.

Первый путь, вероятно, наиболее прогрессивен, но его можно реализовать не всегда и не сразу: создание коррозионно-стойких материалов с эквивалентными механическими и химическими свойствами требует порой длительного времени и, как правило, связано с большими расходами. Повышение коррозионной стойкости материалов электрохимическими методами (протекторная защита, катодная защита) чаще всего ограничено характером защищаемых изделий и условиями среды: если эти методы применимы для защиты корпусов судов, линий газо- и нефтепроводов, опорных мачт линий электропередач, то для защиты мелких металлических изделий они, как правило, неприменимы.