The changes in the teaching of anatomy have nothing to do with cadaver shortages or public opinion about dissection; they have everything to do with time. Despite the immeasurable advances made in medicine over the past century, the material must be covered in the same number of years. Suffice it to say there’s a lot less time for dissection than there was in Astley Cooper’s day.
I asked the students in Patterson’s gross anatomy lab how they’d feel if they hadn’t had a chance to dissect a body. While some, said they would feel cheated—that the gross anatomy cadaver experience was a physician’s rite of passage—many expressed approval. “There were days,” said one, “when it all clicked and I gained a sort of understanding I could never have gotten from a book. But there were other days, a lot of days, when coming up here and spending two hours felt like a huge waste of time.”
But gross anatomy lab is not just about learning anatomy. It is about confronting death. Gross anatomy provides the medical student with what is very often his or her first exposure to a dead body; as such, it has long been considered a vital, necessary step in the doctor’s education. But what was learned, up until quite recently, was not respect and sensitivity, but the opposite. The traditional gross anatomy lab represented a sort of sink-or-swim mentality about dealing with death. To cope with what was being asked of them, medical students had to find ways to desensitize themselves. They quickly learned to objectify cadavers, to think of the dead as structures and tissues, and not a former human being. Humor—at the cadaver’s expense—was tolerated, condoned even. “There was a time not all that long ago,” says Art Dalley, director of the Medical Anatomy Program at Vanderbilt University, “when students were taught to be insensitive, as a coping mechanism.”
Modern educators feel there are better, more direct ways to address death than handing students a scalpel and assigning them a corpse. In Patterson’s anatomy class at UCSF, as in many others, some of the time saved by eliminating full-body dissection will be devoted to a special unit on death and dying. If you’re going to bring in an outsider to teach students about death, a hospice patient or grief counselor surely has as much to offer as a dead man does.
If the trend continues, medicine may find itself with something unimaginable two centuries ago: a surplus of cadavers. It is remarkable how deeply and how quickly public opinion regarding dissection and body donation has come around. I asked Art Dalley what accounted for the change. He cited a combination of factors. The 1960s saw the first heart transplant and the passing of the Uniform Anatomical Gift Act, both of which raised awareness of the need for organs for transplantation and of body donation as an option. Around the same time, Dalley says, there was a notable increase in the cost of funerals. This was followed by the publication of The American Way of Death—Jessica Mitford’s biting exposé of the funeral industry— and a sudden upswing in the popularity of cremation. Willing one’s body to science began to be seen as another acceptable— and, in this case, altruistic—alternative to burial.
To those factors I would add the popularization of science. The gains in the average person’s understanding of biology have, I imagine, worked to dissolve the romance of death and burial—the lingering notion of the cadaver as some beatific being in an otherworldly realm of satin and chorale music, the well-groomed almost-human who simply likes to sleep a lot, underground, in his clothing. The people of the 1800s seemed to feel that burial culminated in a fate less ghastly than that of dissection.
But that, as we’ll see, is hardly the case.
3. LIFE AFTER DEATH
On Human Decay and What Can Be Done About It
Out behind the University of Tennessee Medical Center is a lovely, forested grove with squirrels leaping in the branches of hickory trees and birds calling and patches of green grass where people lie on their backs in the sun, or sometimes the shade, depending on where the researchers put them.
This pleasant Knoxville hillside is a field research facility, the only one in the world dedicated to the study of human decay. The people lying in the sun are dead. They are donated cadavers, helping, in their mute, fragrant way, to advance the science of criminal forensics. For the more you know about how dead bodies decay—the biological and chemical phases they go through, how long each phase lasts, how the environment affects these phases—the better equipped you are to figure out when any given body died: in other words, the day and even the approximate time of day it was murdered. The police are pretty good at pinpointing approximate time of death in recently dispatched bodies. The potassium level of the gel inside the eyes is helpful during the first twenty-four hours, as is algor mortis—the cooling of a dead body; barring temperature extremes, corpses lose about 1.5 degrees Fahrenheit per hour until they reach the temperature of the air around them. (Rigor mortis is more variable: It starts a few hours after death, usually in the head and neck, and continues, moving on down the body, finishing up and disappearing anywhere from ten to forty-eight hours after death.)
If a body has been dead longer than three days, investigators turn to entomological clues (e.g., how old are these fly larvae?) and stages of decay for their answers. And decay is highly dependent on environmental and situational factors. What’s the weather been like? Was the body buried? In what? Seeking better understanding of the effects of these factors, the University of Tennessee (UT) Anthropological Research Facility, as it is blandly and vaguely called, has buried bodies in shallow graves, encased them in concrete, left them in car trunks and man-made ponds, and wrapped them in plastic bags. Pretty much anything a killer might do to dispose of a dead body the researchers at UT have done also.
To understand how these variables affect the time line of decomposition, you must be intimately acquainted with your control scenario: basic, unadulterated human decay. That’s why I’m here. That’s what I want to know: When you let nature take its course, just exactly what course does it take?
My guide to the world of human disassembly is a patient, amiable man named Arpad Vass. Vass has studied the science of human decomposition for more than a decade. He is an adjunct research professor of forensic anthropology at UT and a senior staff scientist at the nearby Oak Ridge National Laboratory. One of Arpad’s projects at ORNL has been to develop a method of pinpointing time of death by analyzing tissue samples from the victim’s organs and measuring the amounts of dozens of different time-dependent decay chemicals. This profile of decay chemicals is then matched against the typical profiles for that tissue for each passing postmortem hour. In test runs, Arpad’s method has determined the time of death to within plus or minus twelve hours.
The samples he used to establish the various chemical breakdown time lines came from bodies at the decay facility. Eighteen bodies, some seven hundred samples in all. It was an unspeakable task, particularly in the later stages of decomposition, and particularly for certain organs. “We’d have to roll the bodies over to get at the liver,” recalls Arpad. The brain he got to using a probe through the eye orbit. Interestingly, neither of these activities was responsible for Arpad’s closest brush with on-the-job regurgitation. “One day last summer,” he says weakly, “I inhaled a fly. I could feel it buzzing down my throat.”