При нижней опоре отдаление от нее преодолевающим движением осуществляется по механизму отталкивания; движение в обратном направлении — уступающее (например, приседание).
Примером движений при верхней опоре может служить подтягивание в висе и опускание. Первая часть этого движения происходит по механизму притягивания к верхней опоре. Необходимо установить, какие движения в суставах являются преодолевающими и работа каких мышц их вызывает. Коль скоро в исходном положении руки вытянуты вверх, то пояс верхних конечностей поднят вверх, лопатки отведены от позвоночного столба и повернуты нижними углами вперед. Ключицы и лопатки при подтягивании будут опускаться тягой широчайших мышц спины и больших грудных мышц, приводить и поворачивать лопатки будут ромбовидные мышцы. В обоих движениях участвуют нижние части трапециевидных мышц. Одновременно широчайшие мышцы спины и трехглавые мышцы плеча разгибают его, а двуглавые мышцы плеча и другие сгибатели сгибают предплечье. Опускание в положении виса выполняется при уступающей (отрицательной) работе тех же самых мышц с перемещением подвижных звеньев в обратном направлении. При уступающей работе мышцы в состоянии развить большее напряжение, чем при преодолевающей. Поэтому уступающее движение при том же отягощении выполнить легче.
Рассмотрим механизм выполнения упражнений (движений), связанных с нагрузкой, направленной в противоположном направлении, т. е. когда биокинематические звенья совершают работу, связанную с механизмом отталкивания, например, выход из приседа при жиме штанги.
При отдалении звеньев друг от друга силой тяги мышцы, места ее прикрепления сближаются, приближение одного конца двуплечевого рычага сопровождается отдалением другого его конца. Отталкивание — способ совершения мышцами положительной работы.
Обычно связь опорных звеньев с нижней опорой бывает неудерживающей; стопу, например, прижимает к грунту только вес верхних звеньев тела.
Общий механизм отталкивания при нижней опоре схематически состоит в следующем (рис. б. З).
Мышца (на рисунке она условно обозначена как сжатая пружина) своим напряжением не позволяет весу верхних звеньев согнуть систему рычагов. Сила F поддерживает верхние звенья, уравновешивает силу их веса Р. Сила F» через опорные звенья давит на опору; онауравновешена противодействием опоры.
Чтобы вызвать отталкивание подвижных звеньев от нижней опоры, необходимо увеличить напряжение мышцы (приращение силы тяги соответственно + AF и + AF2). Тогда сила + AF2 вызовет ускорение подвижных звеньев (+а), направленное вверх, появится сила инерции (Fmh) как не уравновешивающее сопротивление, направленная вниз, приложенная к верхней точке рычагов. Это обусловит появление динамической составляющей опорной реакции (R). Сила + AF2 и есть ускоряющая сила, под действием которой начинается отталкивание. Так же, как и в механизме притягивания, реакция опоры как внешняя сила совершенно необходима, но не она вызывает движения. Человек при отталкивании, как и при притягивании, является самодвижущейся системой; источник энергии движения — внутренний. Твердое тело может перемещаться только под действием внешней силы. А тело человека представляет собой систему тел (звеньев), каждое из которых изменяет свое положение под действием всех приложенных именно к нему сил. Таким образом, движение по механизму отталкивания происходит благодаря увеличению напряжения мышц: они, сближая свои концы, отдаляют подвижные звенья от опорных.
Уступающее приближение к нижней опоре
Как и в случае уступающего отдаления от верхней опоры, при уступающем приближении к нижней опоре мышцы совершают работу под действием верхних звеньев тела. Избыток действия силы веса относительно действия силы тяги мышц служит ускоряющей силой, приближающей тело к опоре. Как и при любом ускорении, возникают силы инерции и изменяется реакция опоры. Примером движений при нижней опоре может служить сгибание и выпрямление рук в упоре лежа. Очевидно, что движение ЦМ тела вниз при нижней неудерживающей опоре может осуществляться под действием силы тяжести только подвижных частей тела. Голова, шея, туловище и ноги фиксированы во всех суставах напряжением мышц-антагонистов и движутся как вниз, так и вверх в виде единого целого. Лопатки фиксированы относительно грудной клетки. Основные движения в суставах при сгибании рук — разгибание в плечевых и сгибание в локтевых и лучезапястных суставах — происходят при уступающей работе мышц-антагонистов. Выпрямление рук в упоре лежа, естественно, представляет собой преодолевающее движение, протекающее с сокращением мышц, которые ранее (в примерах, описанных выше) выполняли уступающую, теперь совершают положительную преодолевающую работу. Вследствие малой скорости и относительно большой длительности движения ускорения, а значит, и силы инерции будут невелики.
Упражнения, когда действующей нагрузкой выступают не масса тела самого спортсмена, а дополнительные отягощения, приложенные к его биокинематическим звеньям, например штанга, гантели, эспандеры и т. п.
Рассмотрим особенности кинематики движения биокинематических звеньев, например при осуществлении жима штанги из положения лежа. При этом кинематика и динамика взаимодействия биомеханической системы с опорой характеризуются некоторыми особенностями. На рис. 6.4 представлена биокинематическая пара, соединенная подвижно (в плечевом суставе) с опорой. Увеличение угла ф между звеньями этой пары приводит к противоположно направленным поворотам звеньев: звено, ближнее к опоре, повернется налево (со,), а звено, дальнее от опоры, повернется направо (со2). При этом ЦМ пары звеньев получит движение вдоль радиуса (VR), соединяющего его с осью внешнего шарнира (опорой), а также в перпендикулярном ему направлении (VT) в левую сторону. Вся пара вращается в направлении ближнего к опоре звена (со3).
Если при этом не приложен момент внешней силы, то происходит взаимная компенсация двух составляющих кинетического момента относительно фиксированной оси (опоры): кинетический момент, образуемый вращательным движением звеньев относительно их ЦМ, направлен в одну сторону, и кинетический момент, обусловленный перемещением самих ЦМ относительно фиксированной оси — в другую. Сгибательно-разгибательные движения спортсмена при взаимодействии с опорой вызывают ряд кинематических следствий сложного характера. Как уже говорилось, при паре угловых скоростей, т. е. равенстве угловых скоростей звеньев, движущихся разнонаправлено, последующее звено (или группа звеньев) получает поступательное движение
Динамика взаимодействия системы звеньев с опорой определяется особенностями передачи и использ·ования энергии. Повышение жесткости[1] мягких тканей в соединениях (суставная жесткость) обеспечивает более полную передачу энергии. Это особенно проявляется при различных отталкиваниях, близких по особенностям и взаимодействиям. С повышением жесткости биомеханическая система приближается к технической механической системе, что уменьшает потери энергии.
Потери энергии при ее передаче по биокинематической цепи (демпфирование[2]) зависят от преобразования механической энергии звеньев в другие виды и ее рассеяния, от степени произвольного напряжения мышц, от величины их растягивания и других факторов.
Приложение 7. Описание отдельных видов лекарственных растений
Аир тростниковый — многолетнее растение свыше 1 метра высотой, размножающееся могучим — до 3 см толщины, длинным — до 50 см, членистым, мясистым, ползучим в болотах корневищем. Аир растет в стоячих или медленно текущих мелких водах, главным образом на окраине прудов, рек и ручьев и во влажных канавах, где часто образует широкие поросли.
1
Жесткость — свойство противодействовать прилагаемой силе. Коэффициент жесткости равен отношению приложенной силы к деформации (Н/м).
2
Демпфирование — свойство рассеиватьзнергию. Коэффициент демпфирования определяется как первая производная диссипативной силы по деформации (Н/с·м).