Выбрать главу

Рис. 5.2. Поскольку присутствие большой массы вызывает искривление пространства-времени, свет далекой звезды отклоняется от прямой, проходя рядом с таким массивным телом, как Солнце. Отметьте разницу между видимой с Земли позицией звезды и ее реальным положением.

До сих пор мы обсуждали гравитацию в макромасштабах. Именно в таких масштабах она становится очевидна – когда действует на уровне звезд, галактик, целой вселенной, – и с этим масштабом Хокинг имел дело под конец 1960-х. Однако – вспомним главу 2 – гравитацию можно рассматривать и на самом микроскопическом, квантовом уровне. Более того, пока мы не изучим гравитацию на квантовом уровне, мы не сможем соотнести ее с тремя другими силами, две из которых только на этом уровне и действуют. При квантово-механическом описании гравитационных взаимодействий Земли и Луны предполагается обмен гравитонами (разновидностью бозонов, частиц-вестников гравитационной силы) между теми частицами, из которых состоят эти два небесных тела.

Нарисовав фон, побалуем себя страничкой научной фантастики.

День гибели Земли

Вспомним, как действует сила притяжения на Земле (рис. 5.3а), а затем отправимся на каникулы в космос. Пока мы отдыхали, с Землей что-то случилось, она съежилась и сделалась вдвое меньше прежнего. Масса осталась прежней, однако плотность во много раз возросла. Доставляя вас после отдыха домой, ракета зависает на том уровне, где раньше находилась поверхность Земли. Вы чувствуете свой вес – тот, который ощущали, когда покидали Землю: ее масса, как и ваша, осталась прежней, и вы сейчас находитесь на том же расстоянии от центра земной гравитации (помните закон Ньютона!). Луна у вас за спиной движется по привычной орбите. Но когда вы приземлитесь на новой поверхности Земли, вы окажетесь вдвое ближе к центру гравитации, и сила притяжения возрастет вчетверо – ваш вес, по вашим ощущениям, окажется намного больше, чем до каникул (рис. 5.3b).

А если случится что-то пострашнее? Если Земля сожмется в горошину, вся ее масса, миллиарды тонн, – в немыслимой плотности точке? Гравитация на поверхности этой горошины возрастет настолько, что вторая космическая скорость должна была бы превысить скорость света. Значит, никто и ничто, даже луч света, не сможет покинуть эту горошину. Земля превратится в черную дыру. Тем не менее на том расстоянии от центра, где прежде находилась земная поверхность, и далее притяжение Земли будет казаться точно таким же, каким оно является ныне (рис 5.3с), и Луна продолжит безмятежно вращаться по своей орбите.

Рис. 5.3. День гибели Земли.

Насколько нам известно, подобный сценарий выходит за грани научного: планеты не превращаются в черные дыры. А вот звезды превращаются. Давайте расскажем ту же историю заново, назначив главной героиней звезду.

Возьмем для начала звезду, чья масса вдесятеро больше массы Солнца, и с радиусом около трех миллионов километров – в пять раз больше радиуса Солнца. Вторая космическая скорость на поверхности такой звезды составит 1000 км/сек. Подобная звезда живет около ста миллионов лет, и все это время внутри нее совершается страшная борьба.

На одной стороне в этой борьбе выступает гравитация, то есть взаимное притяжение всех частиц, составляющих звезду. Гравитация прежде всего и стянула воедино частицы газа, сплотив их в звезду. И теперь, когда частицы оказались ближе друг к другу, гравитация усиливается и пытается вызвать обрушение звезды вовнутрь, коллапс.

Изнутри звезду распирает газ, его давление противодействует гравитации. Давление вызвано избытком тепла, которое высвобождается, когда внутри звезды сталкиваются ядра водорода и соединяются, образуя ядро гелия. Благодаря жару небесное тело испускает свет, а давление изнутри уравновешивает гравитацию и не дает звезде “схлопнуться”.

Так сотню миллионов лет продолжается борьба. Потом внутри звезды заканчивается топливо: нет больше атомов водорода, все они превратились в гелий. В некоторых звездах процесс пойдет дальше: гелий начнет превращаться в более тяжелые элементы, но это лишь краткая отсрочка. Давление изнутри уже не сможет противодействовать гравитации, и звезда съежится. По мере того как объем звезды будет уменьшаться, гравитация на ее поверхности будет становиться все сильнее – так происходило и при формировании Земли. В черную дыру превращается отнюдь не песчинка: если масса звезды в десять раз превышает массу Солнца, а ее радиус достигает тридцати километров, для отрыва от поверхности понадобится скорость 300 000 км/сек, то есть скорость света. Когда свет не сможет покинуть звезду, это и означает, что она стала черной дырой (рис. 5.4)[94].

вернуться

94

Звезды, чья масса не превышает восьми масс Солнца, повидимому, не съеживаются до черной дыры. Лишь достаточно тяжелые звезды становятся черными дырами.