Выбрать главу

В 1968 году трактат Хокинга и Пенроуза о начале времен завоевал второй приз Фонда исследований гравитации, но вопрос все еще висел в воздухе: что, если правильна первая модель Фридмана, та, в которой пространство ограниченно и вселенную в итоге настигает коллапс (рис. 6.1а)? Можно ли утверждать, что и такой тип вселенной начинается с сингулярной точки? К 1970 году Хокинг и Пенроуз сумели доказать, что это верно и для такой вселенной. В “Публикациях Королевской академии” за 1970 год вышла их совместная статья[99], где со всей определенностью утверждалось: если вселенная подчиняется общей теории относительности и соответствует любой модели Фридмана и если во вселенной имеется столько вещества, сколько мы наблюдаем, то она должна была начаться с сингулярной точки, в которой вся масса была спрессована до бесконечной плотности, искривление пространства-времени было бесконечным, и расстояние между любыми объектами равнялось нулю.

Физическая теория не может работать с бесконечно большими числами. Предсказав сингулярную точку с бесконечной плотностью и бесконечным искривлением пространства-времени, общая теория относительности тем самым предсказала свой собственный конец. Любые научные теории разбиваются о загадку сингулярности. Мы утрачиваем возможность предвидеть, законы физики бессильны предсказать, что могло бы явиться из сингулярности – это может оказаться любая разновидность вселенной. А как насчет того, что произошло до образования сингулярности? Неизвестно даже, имеет ли подобный вопрос смысл.

Сказать, что в начале вселенной – сингулярная точка, все равно что сказать: начало вселенной лежит за пределами нашего знания, за пределами любых попыток создать теорию всего. Мы можем утверждать лишь, что время началось, потому что мы это видим, однако и тут немало гадательного. Сингулярность захлопывает дверь прямо у нас перед носом.

Сказка на ночь

Физиков дразнят тем, что они всегда и всюду размышляют о своей науке. Хокинг превосходил в этом смысле даже своих коллег: он выполнял все расчеты в голове – отчасти это стало последствием его недуга – и потому в самом деле носил работу с собой повсюду и мог заняться ею в любой момент. Кип Торн обнаружил у Стивена поразительную способность оперировать мысленными образами объектов, кривых, поверхностей, причем не в трех, а в четырех измерениях пространства-времени[100].

Прекрасный пример того, как работал Хокинг, он сам приводит в книге “Краткая история времени”: “Как-то вечером в ноябре 1970 года, вскоре после рождения моей дочери Люси, я размышлял о черных дырах, пока укладывался спать. Мой недуг превращает укладывание в медленный процесс, поэтому времени для размышлений у меня было предостаточно”[101]. Другой ученый на месте Хокинга кинулся бы к столу записать основные мысли, уравнения, но Хокинг совершил одно из главных в своей жизни открытий в уме, с тем лег в постель и пролежал без сна до рассвета, дожидаясь первых лучей солнца, чтобы позвонить Пенроузу и поделиться с ним новыми идеями. Пенроуз, как утверждает сам Хокинг, тоже думал в этом направлении, однако не охватил последствия этой гипотезы.

Вот в чем суть пришедшей в голову Хокингу идеи: черная дыра не может уменьшаться в размерах, потому что периметр горизонта событий (граница невозврата, расстояние от центра, на котором вторая космическая должна превышать скорость света) не может сократиться.

Представим себе: в результате коллапса звезда съежилась до того радиуса, при котором вторая космическая совпадает со скоростью света. Что произойдет с фотонами, которые эта звезда испускает в момент, когда ее радиус станет еще меньше? Гравитация достаточно сильна, чтобы не позволить лучам света выйти за пределы этого радиуса, но не настолько сильна, чтобы втянуть их в черную дыру. Фотоны так и останутся мерцать по периметру, на прежнем расстоянии от центра, на постоянном горизонте событий. А сама звезда будет и дальше уменьшаться в размерах и не сможет более испускать фотоны.

Хокинг понял: если на горизонте событий скапливаются лучи света, векторы этих лучей не должны пересекаться. Если бы лучи приблизились друг к другу, они бы столкнулись и рухнули в черную дыру. Чтобы область горизонта событий сокращалась, чтобы черная дыра уменьшалась в размерах, как раз и нужно, чтобы лучи на горизонте событий сближались. И здесь парадокс: если они сблизятся, они рухнут в черную дыру, а горизонт событий не станет меньше.

вернуться

99

Hawking S. and Penrose R. The Singularities of Gravitational Collapse and Cosmology. Proceedings of the Royal Society of London A314 (1970), pp. 529–548.

вернуться

100

The Hawking Paradox, 2005.

вернуться

101

Hawking S. A Brief History of Time, p. 103