В 1265 году аббатство стало местом побоища, в котором был разбит и убит Симон де Монфор, известный как «отец-основатель парламента». Летописцы отмечали, что в момент его гибели «небо потемнело, и раскаты грома и огромные молнии потрясли землю». Церковь так почитала его, что похоронила его изуродованное тело под главным престолом. Оно стало источником ряда чудесных исцелений, придавших еще большую известность аббатству в Британии. Аббатство было разрушено по указу Генриха VIII о секуляризации монастырей, обогатившему скорее короля, нежели папу римского. Ныне от аббатства осталась только часовня.
Аббатству Першор повезло немного больше. Первые христианские поселения постоянно подвергались набегам датчан, и многие монастыри были разграблены и разрушены. Не осталось практически ничего от первых церквей. Возрождение аббатства началось в 983 году, когда внук местного вождя Олда выкупил мощи досточти мого Св. Идбурги и похоронил их в аббатстве. Идбурга была внучкой короля Альфреда Великого, она постриглась в монахини в Винчестере и умерла в монастыре в 960 году после безупречно прожитой жизни.
Как и в Ившема, и у ее усыпальницы происходили чудеса, и поэтому она стала вторым центром паломничества. Ныне от этого большого аббатства остались только клирос, колокольня, южный поперечный неф и место раздачи милостыни поблизости. Аббатство было по священо Св. Идбурге и Св. Марии.
Церковь аббатства Тьюкесбери сохранилась — от подручных Кромвеля ее спасли местные жители, уплатившие за нее большую сумму — 453 фунта. Аббатство может сегодня похвалиться второй по размерам приходской церковью в Британии. Ее колоссальные нормандские колонны — самые высокие в Европе. Аббатство было основано в VII веке монахом по имени Теок, построившим первую келью. В 715 году бенедиктинцы учредили монастырь, но он был разрушен датчанами. Нынешнее аббатство сохранилось со времен нормандского нашествия и подобно Ившему и Першору посвящено Деве Марии.
Святым женщинам поставлены и многие другие церкви. Так, Марии посвящены еще церкви в Седжберроу и Эстон-Сомервиле. Церковь в Сувербери посвящена Св. Фейс, в Эштоне под холмом — Св. Варваре, а часовня Нетертон и колодец Св. Катерины — кому же еще, как не Св. Екатерине. Но есть и церкви, посвященные мужчинам: в Кропторне, Стэнтоне и Комбертоне — Св. Михаилу, а во Флэдбери и Бекфорде — Иоанну Крестителю. Еще есть церкви Св. Петра (Дамблтон), Св. Николая (Тэддингтонг), Святой Троицы (Экингтон) и Св. Джайлса (Бредонс-Нортон).
Здесь названы не все церкви, расположенные в изучаемом районе. Самыми приметными являются Малый Комбертон, Бриклхэмптон, Элмли Касл, Хинтон на Лужайке, Кемертон и Олдертон. Они были исключены из компьютерного обследования, поскольку не стали частью моего изначального исследования района. Я также решил не включать и крепость на холме Бредон, но не потому, что она не вписывается в какую-либо схему — она-таки вписывается. Однако объект настолько велик, что он впол не мог стать частью ряда построении (рис. 60).
Прорисовывается схема
В книге «Старый прямой путь» Уоткинс пишет:
«Возьмите себе за правило работать с объектами, а не хвататься — каким бы соблазнительным это ни представлялось — за любой отрезок дороги или тропы в качестве доказательства (леи)… Три или четыре точки становятся дополнительным доказательством. Трех точек недостаточно для доказательства существования леи, нужны как мини мум четыре».
Леи Уоткинса обычно протягивались до 32 километров (20 миль). Применение этих критериев к объектам, окружающим холм Бредон, не дало перспективных результатов. На одной линии выстроены только четыре объекта — Стэнтон, Седжберроу, часовня Нетертон и Першор, и это все. Есть несколько построений из трех точек вроде Тьюкесбери-Сувербери-Ившем и Оксентон-Дамблтон-Эотон Сомервиль. И все же едва ли их можно считать леями. Сколь-нибудь значимый узор прорисовался только тогда, когда я проанализировал угловые соотношения.
Процесс оказался несложным. Я ввел в компьютер названия и координатную сетку различных объектов и с помощью простой математической программы вычислил угловые соотношения между соединяющими их линиями. Компьютер мог бы подсчитать их с точностью до многих десятичных дробей, но такой точности и не нужно. На расстоянии в один километр отклонение на один градус может составить лишь около 300 метров (984 фута). Чтобы облегчить себе задачу, я решил округлять расчеты в сторону увеличения или уменьшения — до ближайшего целого градуса.
В теории случайное распределение объектов должно давать равномерный разброс угловых отношений. Если существовал некий предопределенный план, рассуждал я, тогда очевидные углы в 60° и 90° должны были стать его частью. Поэтому я наладил компьютер на выдергивание этих углов. Для начала я проанализировал десять объектов и получил более 800 различных углов. Позже я собирался проанализировать угловые отношения между многими церквами района, а их более 59. Каждый такой расчет давал более 2800 углов.
Хотя было много примеров углов в 60° и 90° в моем первоначальном обследовании, один храмовый объект выделялся среди остальных. Таблица 3 показывает угловые отношения между церковью в Дамблтоне и девятью другими объектами. Именно эта церковь дала важный ключ, который помог мне разгадать геометрию, лежащую в основе района. Для расшифровки таблицы следует смотреть на объекты в левой колонке и считывать значения под названиями объектов на верхней строчке. На пример, угол Тьюкесбери — Дамблтон — Першор равен 70°, а угол Большой Компертон — Дамблтон — Оувер-бери — 30°.
Так уж случилось, что в этой выборочной таблице все углы кратны 10°, что необычно Кратное число 10° повторяется 18 раз в ряду от 1° до 180°, что составляет 10 процентов возможных случаев. Между девятью объектами возможны 36 углов, так что при любой случайной последовательности объектов нам следует ожидать, что 10 процентов (36:10 = 3,6) из них будут иметь угловое отношение, кратное 10. У нас же все 36 углов кратны 10 — в девять раз больше ожидаемого случайного результата.
Шанс получения такого результата в случайной конфигурации подобного размера равен примерно одному на одиннадцать миллионов, но в данном случае объекты не назовешь совершенно случайными, поскольку они были выбраны среди остальных. И тем не менее результат впечатляет:
Если бы был осуществлен некий сознательный план, следовало бы ожидать большого числа углов в 60° и 90°. Я предполагал, что такой план должен был быть основан на какой-то системе чистой геометрии, ибо прямой угол (в 90°) очень легко построить с помощью нескольких колышков и отрезков шпагата. Деля угол пополам при помощи тех же методов, можно получить дополнительные углы в 45°, 22,5° и т. д. Схожим образом можно построить углы в 60°, для чего нужны лишь три одинаковых отрезка веревки. Углы в 50° и 40° построить сложнее с помощью тех же геометрических методов. В таблице 3 каждый из них появляется три раза, следовательно, существовал какой-то способ их построения.
Найденный позже ответ свидетельствовал как о необычной простоте, так и о математической гениальности системы.
Окончательное решение
Во время анализа свойств прямоугольного треугольника с углами в 40° и 50° я неожиданно наткнулся на решение. Я обнаружил, что в треугольнике с такими углами основание и перпендикулярная сторона измеряются соответственно пятью и шестью единицами.
Иными словами, налицо выраженное целыми числами (5 6) отношение двух перпендикулярных сторон. Поначалу я подумал что это просто счастливое совпадение. Треугольник был выбран потому, что отвечал критериям градусного основания, кратного десяти, то есть имел углы 40°, 50° и 90°. Вскоре меня озарило можно построить большое число углов с помощью очень простых числовых отношений. Построив прямоугольный треугольник и меняя от ношения сторон, можно легко получить определенные углы. Мне оставалось лишь найти отношения, необходимые для построения различных углов.