Но это еще не все. Существует еще одна фундаментальная физическая постоянная, ее принято обозначать буквой h и называть постоянной Планка. Немецкий физик Макс Планк был одним из отцов-основателей квантовой механики. Он ввел эту константу, чтобы связать энергию кванта с его частотой, а значит, постоянная Планка устанавливает связь между энергией и временем или, если вам хочется, между массой и расстоянием. Действуя так же, как мы поступили со скоростью света, примем численное значение постоянной Планка равным безразмерной единице. Что получится? Из всех размерностей у нас останется только размерность энергии, поскольку теперь мы можем выразить через энергетические единицы, например через электрон-вольты, не только энергию, но и массу, и время, и расстояние — и все остальные физические единицы измерения. Постоянная Планка связывает энергию и частоту: Е = hν, частота имеет размерность [l/секунда], тогда время в энергетических единицах будет иметь размерность [1 /электронвольт]. В физике часто вместо постоянной h используется постоянная ħ, которая равна h/(2π), просто потому что так удобнее. В системе единиц, в которой с = ħ = 1, одна секунда будет равна 1,5∙1015/эВ — обратите внимание, что электрон-вольты стоят в знаменателе, обычно в таких случаях используют отрицательные показатели степени и пишут: 1,5∙1015 эВ-1.
В итоге мы создали систему, в которой три основные размерности свели к одной. Теперь мы можем описать весь физический мир, используя только размерность массы, или только размерность длины, или только размерность времени — не принципиально, какую размерность мы выберем, это уже будет результат произвольного соглашения. В физике высоких энергий удобно использовать в качестве базовой размерность энергии. Например, объем, имеющий в привычной системе единиц размерность [длина3], в новой системе, в которой с = ħ = 1, будет иметь размерность [1 /энергия3], потому что длина в этой системе имеет туже размерность, что и время, а время имеет размерность, обратную размерности энергии. Численно 1 м3 будет равен 1,3∙1020 эВ-3.
На первый взгляд описанный подход выглядит непривычно, но вся его прелесть состоит в том, что, оставляя только один независимый размерный параметр, мы можем существенно упростить анализ и свести очень сложные явления к одной физической величине. Порой это выглядит как настоящая магия. Например, предположим, что мы обнаружили новую элементарную частицу, масса которой в три раза превышает массу протона, или в энергетических единицах составляет около 3 миллиардов электрон-вольт — 3 ГэВ (гигаэлектрон-вольта). Если эта частица нестабильна, то каково ожидаемое время ее жизни? Может показаться, что, не зная никаких подробностей о структуре частицы, сделать подобную оценку невозможно. Однако, используя анализ размерностей, можно выдвинуть кое-какие предположения.
Единственная размерная характеристика, присутствующая в этой задаче, — масса, или, что эквивалентно, энергия покоя частицы. Поскольку размерность времени в нашей новой системе единиц эквивалентна обратной размерности массы, разумная оценка времени жизни частицы будет составлять k/(3 ГэВ), где k — некий безразмерный параметр.