Возможности техники XVII века не позволяли Ньютону непосредственно измерить значение гравитационной постоянной, поэтому он предпринял ряд косвенных проверок своего закона. Предположив, что открытый им закон универсален, Ньютон рассчитал период обращения Луны вокруг Земли. Для этого ему нужно было знать ускорение свободного падения на поверхности Земли, радиус Земли и расстояние от Земли до Луны. Все эти величины были в его время уже достаточно точно измерены. По расчетам Ньютона получалось, что период обращения Луны вокруг Земли должен составлять около 28 дней, что прекрасно согласуется с наблюдениями. Наконец, тот факт, что открытые Галилеем спутники Юпитера также подчинялись законам Кеплера, обращаясь вокруг Юпитера, служил сильным подтверждением универсальности закона тяготения Ньютона.
Я рассказываю эту историю не для того, чтобы еще раз показать, как наблюдение того, как движутся тела — в данном случае планеты, — приводит к пониманию того, почему они движутся, а скорее, чтобы продемонстрировать, как ученым удалось использовать эти результаты в современных исследованиях. Начну с замечательного прецедента, созданного британским ученым Генри Кавендишем примерно через 120 лет после открытия Ньютоном закона всемирного тяготения.
Став после защиты постдоком в Гарвардском университете, я быстро усвоил там ценный опыт: прежде чем начинать писать научную статью, следует придумать для нее вызывающее название. Я тогда посчитал, что это новая мода в науке, но оказалось, что подобная традиция восходит еще к Кавендишу, который впервые применил этот прием в 1798 году.
Кавендиш знаменит тем, что ему первому удалось в лабораторных условиях измерить силу притяжения между двумя телами известной массы и в результате вычислить значение гравитационной постоянной G. Сообщая об этом в Королевском Обществе, он не назвал свою статью «Об измерении величины гравитационной постоянной» или «Определение ньютоновской константы G». Нет, он назвал ее «Взвешивание Земли».
У Кавеидиша была веская причина для подобного вызывающего заголовка. К тому времени закон всемирного тяготения Ньютона был уже общепризнанным, также как и уверенность в том, что сила, ответственная за движение планет вокруг Солнца, имеет ту же природу, что и сила, ответственная за движение Луны вокруг Земли. Измерив расстояние до Луны, что было нетрудно сделать даже в семнадцатом веке, определив положение Луны относительно далеких звезд из двух разных мест на земной поверхности и зная период ее обращения — около 28 дней, — можно легко вычислить скорость, с которой движется Луна по своей орбите.
Повторюсь, что главная заслуга Ньютона заключается не столько в объяснении закона Кеплера, утверждающего, что скорость планеты, вращающейся вокруг Солнца, обратно пропорциональна квадратному корню из расстояния до Солнца, сколько в том, что он показал, что этот же закон может применяться и к движению Луны, и к падению предметов на поверхности Земли. Закон всемирного тяготения предполагает, что коэффициент пропорциональности G один и тот же и для силы, действующей между Солнцем и планетой, и для силы, действующей между Землей и яблоком. Но Ньютон не привел доказательств, что значение G в обоих случаях обязано быть одинаковым. Это была лишь гипотеза, основанная на предположении, что закон должен быть простым, а значит, значение G должно быть одинаковым для всех тел, независимо от их природы.
Но, зная расстояние, на котором обращается Луна вокруг Земли, и скорость, с которой Луна движется по орбите, мы тем не менее не можем определить значение самой константы G, потому что для этого нам необходимо знать массу Земли. С другой стороны, имея независимо измеренное значение G, мы могли бы вычислить массу Земли на основании имеющихся астрономических данных. Таким образом, Кавендиш оказался первым человеком, которому удалось независимо измерить величину G, а следовательно, вычислить массу Земли.
Заслуга Кавендиша состоит не только в блестящей рекламе, которую он сделал своему открытию, но и в технике, которую он использовал для взвешивания Земли. Разработанные им экспериментальные методы используются и сегодня. Наши лучшие оценки массы Солнца основываются на измерении гелиоцентрических расстояний и скоростей планет Солнечной системы. Сегодня мы способны выполнить подобные измерения с точностью лучшей, чем одна миллионная, но, к сожалению, ньютоновская гравитационная постоянная является одной из наименее точно измеренных мировых констант. Она известна нам с точностью не более одной стотысячной. В результате и наши знания о массе Солнца ограничиваются этой точностью.