Но если мы откроем обе щели и сложим обе вероятности, то вполне может оказаться, что их сумма будет равна нулю:
В реальном эксперименте это выглядит следующим образом: если мы оставляем открытой только одну из щелей, либо верхнюю, либо нижнюю, то наблюдаем в точке B вспышки от попадающих туда электронов. Если же мы открываем обе щели, то экран в точке B остается темным, даже если мы выпускаем электроны по одному. Электроны ведут себя так, как будто они и в самом деле проходят одновременно через обе щели! Если мы захотим узнать, как же на самом деле ведет себя электрон, и поставим возле щелей детекторы, то они будут каждый раз фиксировать, что электрон пролетел либо через одну, либо через другую щель, а в точке B на экране будут фиксироваться вспышки — мы будем получать такие же результаты, как и в том случае, когда мы закрывали одну из щелей. Значит, установка детекторов каким-то образом изменяет правила расчета вероятностей.
Я взял на себя труд описать все это в деталях не столько для того, чтобы познакомить вас с явлением, имеющим основополагающее значение на атомных масштабах, сколько для того, чтобы показать, как этот невероятный, но подтвержденный опытным путем результат приводит при включении в рассмотрение специальной теории относительности к таким следствиям, с которыми было очень трудно смириться даже тем физикам, которые впервые их вывели. Но физика развивается именно путем проверки теорий на таких крайних случаях.
Если допустить, что электроны каким-то образом «исследуют» все доступные им траектории, а мы, в свою очередь, принципиально не можем узнать, что они делают на самом деле, то нам придется смириться с тем, что утверждение о том, возможно или невозможно какое-либо из совершаемых электроном действий, имеет смысл в том и только в том случае, если мы имеем принципиальную возможность это действие наблюдать. Например, принцип неопределенности не позволяет нам точно определить несколько последовательных положений электрона, разделенных очень малыми промежутками времени, а это означает, что мы не можем определить «мгновенную» скорость электрона. Но тогда мы должны признать, что на очень коротких промежутках времени электрон может двигаться со сколь угодно большой скоростью, и даже быстрее света, что запрещено специальной теорией относительности.
Таким образом, мы приходим к известному философскому вопросу: «Издает ли звук падающее дерево, если рядом нет никого, кто мог бы этот звук услышать?» Или в нашем случае: «Может ли частица в течение очень коротких промежутков времени превышать скорость света, если мы принципиально не можем обнаружить этот факт из-за принципа неопределенности, и более того, если этот факт вообще не имеет никаких наблюдаемых последствий?» В обоих случаях ответ: «Да».
Специальная теория относительности настолько тесно связывает пространство и время, что накладывает ограничение на максимальную скорость, которая определяется как отношение пройденного расстояния к промежутку времени, за которое оно пройдено. Одним из следствий такой связи является то, что тело, движущееся быстрее света, должно при этом двигаться вспять во времени! Это одна из причин запрета подобных движений, в противном случае возникнет нарушение причинно-следственных связей, которое так любят эксплуатировать писатели-фантасты, например отправляя героя в прошлое, где он убивает свою бабушку, делая невозможным собственное рождение. Но квантовая механика не запрещает частицам в течение очень коротких промежутков времени двигаться быстрее света при условии, что такое движение в силу принципа неопределенности никаким способом не может быть обнаружено. До тех пор пока мы принципиально не можем измерить сверхсветовую скорость частицы, она не нарушает никаких требований специальной теории относительности. Но чтобы квантовая теория оставалась согласованной со специальной теорией относительности, в течение таких интервалов времени частица, двигаясь со сверхсветовой скоростью, должна путешествовать назад во времени.
Что это означает на практике? Нарисуем траекторию электрона, как бы она выглядела с точки зрения гипотетического наблюдателя, способного фиксировать мгновенные прыжки во времени:
Этот наблюдатель обнаружит в момент времени 1 одну частицу, в момент времени 2 — три частицы и в момент времени 3 — снова одну частицу. Другими словами, количество частиц, наблюдаемых в каждый момент времени, для такого наблюдателя не сохраняется! В один момент времени он видит один электрон, а в другой у электрона вдруг появляется пара попутчиков, причем один из этих попутчиков движется вспять во времени.