Но как должен выглядеть электрон, который движется вспять во времени? Мы делаем вывод о том, что наблюдаемая частица является электроном, измеряя ее массу и электрический заряд. А как мы измеряем заряд частицы? Обычно на основании того, в какую сторону отклоняется частица в электрическом или магнитном поле. Допустим, электрон, заряженный отрицательно, отклоняется вправо. Если электрон движется вспять во времени, то наблюдатель, для которого время по-прежнему движется вперед, будет наблюдать полет этого электрона, как в запущенном в обратную сторону кинофильме, то есть он увидит частицу, которая по отношению к направлению своего движения будет отклоняться влево, как если бы эта частица имела не отрицательный, а положительный заряд. Теперь мы можем описать, что увидит наблюдатель в показанном на предыдущем рисунке случае:
С этой точки зрения картина выглядит уже не такой странной. В некоторый момент времени в точке А появляются из ниоткуда две частицы, одна из которых, так же как и электрон, заряжена отрицательно, а вторая — положительно. Положительная частица движется навстречу первому электрону и встречается с ним в точке B, где они взаимно уничтожаются, а второй электрон продолжает свое путешествие.
Как я уже говорил, никакой реальный наблюдатель не способен измерить скорость электрона между моментами времени 1 и 3 — это запрещает принцип неопределенности. Точно так же никакой реальный наблюдатель не способен обнаружить рождение частиц из ничего, равно как и измерить скорость частицы, движущейся быстрее света. Но независимо от того, можем мы или нет зарегистрировать такие процессы, квантовая механика их не запрещает. Если рождение и уничтожение частиц происходит на таких временных интервалах, когда принцип неопределенности делает невозможным их обнаружение, то никаких противоречий со специальной теорией относительности не возникает. Такие частицы называются виртуальными. Как я рассказывал в первой главе, подобные процессы не могут быть обнаружены путем прямых измерений, но они могут косвенно влиять на результаты других экспериментов, что и было показано Бете и его коллегами.
Уравнение, объединяющее квантовую механику и специальную теорию относительности применительно к электронам, было впервые выведено в 1928 году британским физиком Полем Адриеном Морисом Дпраком, одним из отцов-основателей квантовой механики, занимавшим с 1932 по 1969 год пост Лукасовского профессора математики (в свое время этот пост занимал Исаак Ньютон, а с 1979 по 2009 год — Стивен Хокинг). Теория, объединившая квантовую механику и специальную теорию относительности, получила название квантовая электродинамика. Она и была основной темой знаменитого совещания на Шелтер Айленде, но окончательно квантовая электродинамика сформировалась только спустя двадцать лет благодаря работам Фейнмана и его коллег.
Никакие два других физика не были столь различны меж собой, как Дирак и Фейнман. Фейнман был экстравертом, Дирак — интровертом. Отец Дирака, будучи родом из Швейцарии, преподавал в Бристоле французский язык и требовал от своего среднего сына Поля говорить дома только по-французски. Будучи не в состоянии точно и полно выражать свои мысли на французском, Поль предпочитал молчать, и эта молчаливость осталась с ним на всю жизнь.
Рассказывают, и это похоже на правду, что Нильс Бор — директор института в Копенгагене, куда поступил на работу Дирак после получения докторской степени в Кембридже, — вскоре после знакомства с Дираком посетил Эрнеста Резерфорда. Бор пожаловался Резерфорду на то, что поступивший к нему на работу молодой физик за все это время не произнес ни одного слова. В ответ Резерфорд рассказал Бору анекдот: «Стесненный в средствах покупатель заходит в магазин, чтобы приобрести попугая. Хозяин предлагает ему первого попугая красивой желто-белой расцветки, знающего 300 слов. Цена птицы — $5000. Покупатель отказывается, тогда хозяин предлагает ему другого попугая, еще более красивого и говорящего на четырех языках, — за $25 000. Покупатель, обескураженный ценой, оглядывается по сторонам и обращает внимание на невзрачного попугая, сидящего на жердочке в дальнем углу магазина. На вопрос, сколько стоит эта птица, следует ответ: $100 000. “Сколько же иностранных языков знает этот попугай”, — потрясенно спрашивает покупатель. “Ни одного, — отвечает продавец, — он вообще не разговаривает!” — “Но почему же тогда он стоит так дорого?” — “Потому что он думает!”»