Выбрать главу

Как бы то ни было, Дирак не питал склонности к визуализации в физике. Напротив, он наиболее комфортно чувствовал себя среди уравнений и после нескольких лет работы наконец вывел замечательное уравнение, корректно описывающее релятивистское поведение электрона. Спустя какое-то время стало понятно, что это уравнение предсказывает существование частицы, эквивалентной электрону, но имеющей положительный заряд, причем она может существовать не только как виртуальная пара виртуального же электрона, но и как самостоятельная, вполне реальная наблюдаемая частица.

В то время единственной известной положительно заряженной частицей был протон. С одной стороны, уравнение Дирака прекрасно описывало необъяснимые до того атомные явления, с другой — физики в то время еще не были готовы к таким радикальным шагам, как признание существования неизвестной ранее элементарной частицы, поэтому они предпочли считать, что предсказываемая уравнением Дирака частица и есть протон. Оставалась, правда, одна загвоздка: протон в 2000 раз тяжелее электрона, в то время как из уравнения следовало, что масса новой частицы должна быть сравнимой с массой электрона.

Это был пример того, как две хорошо проверенные теории в предельном случае приводили к парадоксальным выводам. Однако, в отличие от Эйнштейна, квантовые механики в 1928 году не были готовы признать, что их теория предсказывает принципиально новое явление. Ситуация переломилась в 1932 году, когда американский экспериментатор Карл Андерсон, исследуя космические лучи — потоки высокоэнергетических частиц, возникающих в результате процессов, происходящих где-то в космосе, от солнечных вспышек до взрывов сверхновых, — обнаружил нечто интересное. В числе регистрируемых им частиц оказалась частица, имеющая массу электрона и несущая положительный заряд. Это и была предсказанная Дираком частица, антиэлектрон, получивший название позитрон. Сегодня мы знаем, что законы квантовой механики требуют, чтобы каждой частице соответствовала своя античастица, имеющая такую же массу, но несущая противоположный электрический заряд.

Размышляя впоследствии над собственной нерешительностью в отношении предположения существования новой частицы, Дирак говорил: «Мое уравнение оказалось умнее меня!» Эта история лишний раз иллюстрирует тот факт, что развитие физики происходит не путем отбрасывания старых теорий, а путем рассмотрения предельных случаев работающих и хорошо проверенных теорий и «проталкивания» их за пределы предельных случаев с целью вывода новых следствий.

Я надеюсь, что мне удалось протолкнуть перед читателями идею проталкивания идей настолько далеко, насколько ее вообще можно протолкнуть. Но называя эту главу «Творческий плагиат», я имел в виду не только доведение старых теорий до предела применимости, но и почти полное копирование их при создании новых теорий. Например, сегодня нам известны четыре фундаментальных типа взаимодействий: гравитационное, слабое, электромагнитное и сильное, и описание каждого из них в чем-то копирует описание других взаимодействий.

Начнем с ньютоновского закона всемирного тяготения. Помимо гравитации, в природе существует еще только одно «дальнодействующее» взаимодействие — электромагнитное. Замените массы в законе всемирного тяготения на электрические заряды, и вы получите закон Кулона, описывающий электростатическую силу, действующую между двумя заряженными телами. Классическая картина электрона, обращающегося вокруг протона в атоме водорода, полностью копирует картину обращения Ауны вокруг Земли.

Да, электрическое взаимодействие гораздо сильнее гравитационного, и это приводит к разным масштабам описываемых законом Ньютона и законом Кулона явлений, но в остальном все законы, описывающие движение планет вокруг Солнца, применимы и к законам, описывающим движение заряженных частиц. Используя те же математические правила, которые мы применяем для того, чтобы рассчитать период обращения Луны вокруг Земли, равный одному месяцу, мы можем рассчитать период обращения электрона вокруг протона в атоме водорода, который составляет порядка 10-15 с. А из того, что излучаемый атомом водорода свет имеет частоту порядка 1015 Гц, следует заключить, что наш расчет правильный.

Разумеется, между гравитацией и электромагнетизмом существуют важные различия. Электрические заряды в природе бывают двух типов: положительные и отрицательные, поэтому электрические силы могут быть как силами притяжения, так и отталкивания. К тому же между движущимися зарядами действуют еще и магнитные силы. Как я уже говорил ранее, это приводит к тому, что движущиеся заряды излучают электромагнитные волны, к которым относится и свет. Теория электромагнетизма, объединяющая все эти явления, в свою очередь, служит основой для теории слабого взаимодействия, которое отвечает за большинство ядерных реакций. Теории электромагнитного и слабого взаимодействий настолько похожи, что в конечном итоге были объединены в единую электрослабую теорию. Четвертое — сильное взаимодействие — отвечает за силы, действующие между кварками, из которых состоят протоны и нейтроны. Теория сильного взаимодействия построена по образцу квантовой электродинамики, что отражено даже в ее названии: квантовая хромодинамика. Наконец, имея опыт создания теорий электромагнитного, слабого и сильного взаимодействий, мы можем вернуться к общей теории относительности Эйнштейна, описывающей гравитацию, и попробовать согласовать ее с квантовой механикой. Как сказал американский теоретик Шелдон Глэшоу физика подобна Уроборосу — змее, кусающей себя за хвост.