Выбрать главу

Обе эти причины неразрывно связаны с симметрией. Вода и намагниченное железо в критической точке в некотором смысле подобны шахматной доске. Существуют только две степени свободы: черный и белый цвет клеток, повышенная или пониженная плотность, направление намагниченности вверх или вниз. Но ведь так бывает не всегда. Основной параметр, характеризующий возможные состояния системы вблизи критической точки, может иметь больше степеней свободы, например иметь величину и направление. Такая система будет выглядеть вблизи своей критической точки следующим образом:

Вы можете подумать, что основные характеристики поведения такого материала вблизи критической точки будут отличаться от поведения воды или идеализированного куска намагниченного железа, и будете правы. Но в чем состоит главное различие между этим рисунком и рисунком, приведенным на странице 199? В наборе возможных значений параметра, описывающего фазовый переход. А что характеризует этот набор возможных значений? Основные симметрии этого параметра порядка. В зависимости от типа симметрии параметр порядка может принимать значения, соответствующие, например, координатам точки на окружности, на прямой, на сфере, в квадрате, в треугольнике и так далее.

Таким образом, мы опять видим, как симметрия определяет динамику процесса. Характер фазового перехода в критической точке полностью определяется характером параметра порядка. Но сам параметр порядка ограничен его симметрией. Вещества с одинаковой симметрией параметра порядка, претерпевая фазовый переход в критической точке, ведут себя одинаково. И в этом случае симметрия полностью определяет физику.

Такое использование симметрии позволяет нам увидеть подобие между физикой конденсированных сред и физикой элементарных частиц. На приведенном выше рисунке показано не что иное, как типичный пример спонтанного нарушения симметрии. Параметр порядка — вектор, характеризующий направление локальных магнитных полей, — может принимать любые направления. Он обладает внутренней круговой симметрией. После выстраивания элементарных «магнитиков» в одном направлении эта симметрия нарушается, спонтанно выбирая какое-то одно направление.

В приведенном выше примере в критической точке это направление постоянно меняется, и это происходит на всех масштабах, поэтому в критической точке все направления равноправны и симметрия не нарушена. Но вдали от критической точки система будет находиться в какой-то одной конфигурации, это может быть, например, жидкая вода или намагниченный в каком-то одном направлении кусок железа. В физике элементарных частиц мы поступаем похожим образом, описывая конфигурацию основного состояния Вселенной — вакуум — как некую когерентную конфигурацию элементарных полей, имеющих в этом состоянии некоторые фиксированные значения. Параметром порядка в этом случае являются величины самих элементарных полей. Если в низшем энергетическом состоянии они имеют ненулевое значение, то частицы, которые взаимодействуют с этими полями, будут вести себя иначе, чем частицы, которые с ними не взаимодействуют. Тогда существовавшие ранее симметрии, характеризующие эти элементарные частицы, нарушатся.

В итоге симметрия, проявляющаяся на малых масштабах, на которых флуктуации фоновых полей слишком сильны, чтобы согласованно влиять на поведение частиц, нарушается на больших масштабах, где локальные флуктуации усредняются. Кроме того, считается, что нарушенные ныне симметрии были ненарушенными на очень ранней стадии Большого взрыва, когда Вселенная была очень мала и крайне горяча. При расширении Вселенной в ней произошел фазовый переход, аналогичный переходу воды в жидкое состояние, когда температура опускается ниже критической точки. При достаточно высокой температуре могут проявляться нарушенные в обычном состоянии симметрии, потому что параметр порядка, характеризующий состояния элементарные полей, при высокой температуре обладает большим числом степеней свободы.