Выбрать главу

Затем можно построить эффективную теорию движения атомных ядер, которая будет явно отслеживать только ядерные степени свободы, а электронную конфигурацию учитывать лишь как некий усредненный параметр. Это приближение квантовой механики известно под названием теория БорнаОппенгеймера. Она напоминает классическое описание движения мяча, при котором отслеживается движение его центра масс и дополнительно учитывается вращение мяча относительно центра масс.

Возьмем другой, более свежий пример, относящийся к сверхпроводимости. Я рассказывал, как в сверхпроводнике пары электронов объединяются в когерентную конфигурацию. Для описания такого состояния вещества нет необходимости описывать каждый электрон индивидуально, поскольку для того, чтобы один электрон повел себя отличным от остальных электронов образом, требуется затратить слишком много энергии. Итак, мы имеем возможность построить эффективную теорию, которая описывала бы когерентную конфигурацию как единое целое. Такая теория, идея которой была предложена в 1935 году Фрицем Лондоном, была построена в 1950 году советскими физиками Львом Ландау и Виталием Гинзбургом. Она достоверно воспроизводит все основные макроскопические особенности сверхпроводящих материалов, включая эффект Мейснера, вызываемый тем, что фотоны в сверхпроводнике приобретают эффективную массу.

Я уже говорил, что разделение параметров задачи на существенные и несущественные переменные само по себе не является чем-то новым. Объединение квантовой механики с теорией относительности потребовало вообще выкинуть несущественные переменные, причем для того, чтобы получить конечный практический результат, потребовалось выкинуть не несколько, а бесконечное количество переменных. К счастью, Фейнман с коллегами показали, что это можно делать безнаказанно.

Давайте рассмотрим этот ключевой момент на более конкретном примере столкновения двух электронов. Классическая электродинамика говорит нам, что электроны будут отталкиваться друг от друга. Если электроны первоначально движутся очень медленно, они никогда не приблизятся друг к Другу на расстояние, на котором становятся существенными квантовые эффекты, и для описания движения таких электронов достаточно классической максвелловской теории. Но если они движутся достаточно быстро, чтобы сблизиться на расстояние, сравнимое с размером атома, квантово-механическое описание становится насущно необходимым.

Что «видит» электрон, реагируя на электрическое поле другого электрона? В вакууме постоянно происходит рождение и уничтожение пар частиц и античастиц. Положительно заряженные виртуальные частицы притягиваются к электрону, отрицательные — отталкиваются.

Таким образом, электрон в некотором смысле постоянно носит на себе «шубу» из виртуальных частиц. Поскольку большинство этих частиц выскакивают из вакуума на чрезвычайно короткое время и не успевают пролететь большое расстояние, размер этой шубы довольно мал. На больших расстояниях можно объединить эффект воздействия всех виртуальных частиц, просто подправив заряд электрона.

Поступая таким образом, мы складываем в единое число все микроскопические особенности электрического поля, возникающего за счет окружающей электрон шубы из виртуальных частиц. Это число представляет собой тот самый эффективный заряд электрона, значение которого записано в школьных учебниках, — именно этот заряд мы измеряем в лабораториях и затем используем при расчетах, например, электронно-лучевых трубок.

Таким образом, заряд электрона является фундаментальной физической величиной только в той мере, в какой он описывает электрон на определенном масштабе явлений! Если электроны сближаются на расстояние, сравнимое с размером окружающей каждый из них виртуальной «шубы», то они оставляют часть этой «шубы» позади, и эффективный заряд каждого из электронов изменяется. В принципе то же самое происходит и при лэмбовском сдвиге. Это пример механизма влияния виртуальных частиц на измеряемые свойства реальных частиц, приводящего к тому, что эффективный заряд электрона оказывается разным на разных расстояниях, и мы способны зарегистрировать эту разницу экспериментально.